引言:数据可视化在现代生活占据了主导地位,原因在于表现一大堆数据或者文字,人们根本不会花费太多时间去分析它,更为直观的以图表显示形式会表达出更多的信息,更符合现代化生活的快节奏感!!!下面简单模拟一个9、10月的温度变化曲线,以每日平均温度为基准量。一起来看看吧!!!
首先给大家一个直观的图文解释,更为直观,先上结果图,然后一一展开说明。
9、10月份温度变化曲线图
提前说明9月份那一天的温度数据看做是10月份那一天的昨天数据(好像有点绕O(∩_∩)O哈哈~)
1.导入相应的函数库
import numpy as np from matplotlib import pyplot as plt from matplotlib import font_manager
解释:numpy:函数库应用于生成10月份温度模拟数据。
matplotlib:函数库用于图形绘制。
调取字体文件库
2.首先是生成10月份模拟温度数据。
代码:
x=np.arange(1,21) y1=30+np.random.randn(20) y2=31+np.random.randn(20)
解释:假设昨天温度在30度附近变化,今天的温度在31度附近变化。
3.设置窗口与曲线样式。
plt.figure(figsize=(16,10),dpi=40) plt.plot(x,y1,label='yesterday',color='r',linestyle='--') plt.plot(x,y2,label='today',color='r',linestyle='-')
解释:昨天采用虚线。今天采用实线。都为红色。
4.设置坐标轴标度(刻度)。
x_labels = ["{}day".format(i) for i in x] plt.xticks(x,x_labels,rotation=50,fontproperties=font) plt.yticks(range(20,33))
解释:X轴设置是从1号到20号,字体倾斜50度(为了不遮挡),字体设置宋体常规,字体大小20。Y轴设置刻度为从20度到30度变化 范围,字体与字体大小与上着相同。
5.添加案例与设置网格。
plt.grid(alpha=0.2,linestyle='--') #plt.legend(loc="upper right",fontsize=1) plt.legend(prop=font,loc="upper right")
解释:上面有两种方式设置案例图像大小。
6.添加坐标轴标签信息。
plt.xlabel("Oct",fontproperties=font) plt.ylabel("Temperture/(℃)",fontproperties=font) plt.title("Temperature changes in October ",fontproperties=font) plt.show()
解释:就是添加坐标轴的单位信息。最后显示。
注意:温度数据采用随机方式生成,每次运行程序温度不一定相同哦!
#
7.结束:
GAME OVER
如果理解错误,欢迎大家批评,及时纠正小琼的错误哦,真心感谢你的纠正!!!
如果小伙伴梦有疑问欢迎在评论区留言哦!!!
如果感觉不错的话!点个赞呗,不用客气!(O(∩_∩)O哈哈~)
欢迎和小伙伴梦一起学习,共同努力,加油!!!
小琼独家所有
扫码有惊喜!!!
#