存个档
数据集划分程序,将已经合并的图片和标签划分为如下格式
dataset(train(img、ann)、val(img、ann))
代码:
import glob
import os
import shutil
outputpath='E:\Project\Waste_sorting/test/nanodet-main\dataset\std6_4' #确定数据集的输出位置
input_imgpath='E:\Project\Waste_sorting\dataset\std6_4\imgall' #确定所有输入图片的位置
input_labelpath='E:\Project\Waste_sorting\dataset\std6_4\labelall' #确定所有输入标签的位置
train_ratio=8 #确定训练集与验证集的划分比例 8:2
count=0
if not os.path.exists(outputpath+'/train'): #创建输出位置文件夹
os.makedirs(outputpath+'/train')
os.makedirs(outputpath+'/train/img')
os.makedirs(outputpath+'/train/ann')
else :
print('文件夹已存在,请检查输出目录')
if not os.path.exists(outputpath+'/val'):
os.makedirs(outputpath+'/val')
os.makedirs(outputpath+'/val/img')
os.makedirs(outputpath+'/val/ann')
else :
print('文件夹已存在,请检查输出目录')
img=glob.glob(input_imgpath+'/*.jpg')
ann=glob.glob(input_labelpath+'/*.xml')
for i in img:
if count%10<train_ratio:
shutil.copy(i,outputpath+'/train/img/')
else:
shutil.copy(i,outputpath+'/val/img/')
count+=1
if count%100==0:
print('已完成图片移动数'+str(count))
count=0
for i in ann:
if count%10<train_ratio:
shutil.copy(i,outputpath+'/train/ann/')
else:
shutil.copy(i,outputpath+'/val/ann/')
count+=1
if count%100==0:
print('已完成标签移动数'+str(count))