一、voc数据集按比例划分train、val

本文介绍了如何将下载的VOC数据集利用代码按比例划分为训练集(train)和验证集(val),主要涉及images和annotations的处理。通过调整代码中的特定比例参数,可以实现定制化的数据集划分。
摘要由CSDN通过智能技术生成

下载的voc数据集 images ,annotations. 

经下代码 按比例划分成,只需要修改中文批注部分路

import os
import sys
import random
import shutil


if __name__ == '__main__':
    train_percent = 0.8  # 训练集比例
    val_percent = 0.2   # 验证集比例

    Root = '../datasets/voc-end/'  # 数据集文件夹路径
    imgs_path = Root + 'images/'    # 图片路径
    xml_path = Root + '/annotations/'  # 标注路径
    data_c = ['jpg', 'xml']     # 数据种类 如.jpeg需修改成jpeg
    
    imgs_list = []
    xml_list = []
    imgs_list = os.listdir(imgs_path)
    xml_list = os.listdir(xml_path)

    if len(imgs_list) != len(xml_list):
        s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值