Task5 MapReduce模型

5.1 概述

5.1.1 分布式并行编程

  在过去的很长一段时间里,CPU的性能都会遵循“摩尔定律”,大约每隔18个月性能翻一番。这意味着,不需要对程序做任何改变,仅仅通过使用更高级的CPU,程序就可以享受免费的性能提升。但是,大规模集成电路的制作工艺已经达到一个极限,从2005年开始摩尔定律逐渐失效。为了提升程序的运行性能,就不能再把希望过多地寄托在性能更高的CPU身上,于是,人们开始借助于分布式并行编程来提高程序的性能。分布式程序运行在大规模计算机集群上,集群中包括大量廉价服务器,可以并行执行大规模数据处理任务,从而获得海量的计算能力。

提升数据处理计算的能力刻不容缓!!!

  分布式并行编程与传统的程序开发方式有很大的区别。传统的程序都是以单指令、单数据流的方式顺序执行,虽然这种方式比较符合人类的思维习惯,但是,这种程序的性能受到单台机器性能的限制,可扩展性较差。分布式并行程序可以运行在由大量计算机构成的集群上,从而可以充分利用集群的并行处理能力,同时,通过向集群中增加新的计算节点,就可以很容易实现集群计算能力的扩充。

  谷歌公司最先提出了分布式并行编程模型MapReduce,Hadoop MapReduce是它的开源实现。谷歌的MapReduce运行在分布式文件系统GFS上,与谷歌类似,Hadoop MapReduce运行在分布式文件系统HDFS上。相对而言,Hadoop MapReduce要比谷歌MapReduce的使用门槛低很多,程序员即使没有任何分布式程序开发经验,也可以很轻松地开发出分布式程序并部署到计算机集群中。

5.1.2 MapReduce模型简介

  MapReduce将复杂的、运行于大规模集群上的并行计算过程高度抽象到了两个函数:Map和Reduce,这两个函数及其核心思想都源自函数式编程语言。

  MapReduce设计的一个理念就是“计算向数据靠拢”,而不是“数据向计算靠拢",因为数据需要大量的网络传输开销,尤其是在大规模数据环境下,这种开销尤为惊人,所以,移动计算要比移动数据更加经济。在这种理念下,只要有可能,一个集群中的MapReduce框架就会将Map程序就近地在HDFS数据所在的节点运行,即将计算节点和存储节点放在一起运行,从而减少了节点间的数据移动开销。

  MapReduce框架采用了Master/Slave架构,包括一个Master和若干个Slave,Master上运行JobTrackerSlave上运行 TaskTracker。用户提交的每个计算作业,会被划分成若干个任务。

  • JobTracker负责作业和任务的调度,监控它们的执行,并重新调度已经失败的任务。

  • TaskTracker负责执行由JobTracker指派的任务。

  MapReduce是Hadoop中一个批量计算的框架,在整个MapReduce作业的过程中,包括从数据的输入、数据的处理、数据的输出这些部分,而其中数据的处理部分就由map、reduce、combiner等操作组成。在一个MapReduce的作业中必定会涉及到如下一些组件:

  • 客户端:提交MapReduce作业

  • yarn资源管理器:负责集群上计算资源的协调

  • yarn节点管理器:负责启动和监控集群中机器上的计算容器(container)

  • MapReduce的application master:负责协调运行MapReduce的作业

  • HDFS:分布式文件系统,负责与其他实体共享作业文件

5.1.3 Map和Reduce函数

  MapReduce模型的核心是Map函数和Reduce函数,二者都是由应用程序开发者负责具体实现的。

  Map函数和Reduce函数都是以<key, value>作为输入,按一定的映射规则转换成另一个或一批<key, value>进行输出。

函数

输入

输出

说明

Map

<k1,v1>

如:<行号,”a b c”>

List(<k2,v2>)

如:<“a”,1>

1、将小数据集进一步解析成一批<key,value>对,输入Map函数中进行处理

2、每一个输入的<k1,v1>会输出一批<k2,v2>。<k2,v2>是计算的中间结果

Reduce

<k2,List(v2)>

如:<“a”,<1,1,1>>

<k3,v3>

如:<“a”,3>

输入的中间结果<k2,List(v2)>中的List(v2)表示是一批属于同一个k2的value

这里看起来好枯燥╮(╯▽╰)╭ , 举个栗子方便理解,啦啦啦啦啦啦!
这里再给出一个简单WordCount实例

  比如,我们想编写一个MapReduce程序,用于统计一个文本文件中每个单词出现的次数,具体思路如下:

  • 对于Map函数的输入<k1,v1>而言,其具体输入数据就是<某一行文本在文件中的偏移位置,该行文本的内容>。用户可以自己编写Map函数处理过程,把文件中的一行读取后解析出每个单词,输出一批中间结果<单词,出现次数>;

  • 然后,把这些中间结果作为Reduce函数的输入,Reduce函数的具体处理过程也是由用户自己编写的,用户可以将相同单词的出现次数进行累加,输出每个单词出现的总次数

5.2 MapReduce的工作流程

ps:编者警告,以下内容十分硬核,建议买杯咖啡慎入,希望大家能坚持学下去,加油加油!!

5.2.1 工作流程概述

  大规模数据集的处理包括分布式存储分布式计算两个核心环节。谷歌公司用分布式文件系统GFS实现分布式数据存储,用MapReduce实现分布式计算,而Hadoop则使用分布式文件系统HDFS实现分布式数据存储,用Hadoop MapReduce实现分布式计算。MapReduce的输入和输出都需要借助于分布式文件系统进行存储,这些文件被分布存储到集群中的多个节点上。

  MapReduce的核心思想可以用“分而治之”来描述,即把一个大的数据集拆分成多个小数据块在多台机器上并行处理,也就是说,一个大的MapReduce作业的处理流程如下:

  首先会被拆分成许多个Map任务在多台机器上并行执行,每个Map任务通常运行在数据存储的节点上,这样,计算和数据就可以放在一起运行,不需要额外的数据传输开销。当Map任务结束后,会生成以<key,value>形式表示的许多中间结果。

  然后,这些中间结果会被分发到多个Reduce任务在多台机器上并行执行具有相同key的<key,value>会被发送到同一个Reduce任务那里,Reduce任务会对中间结果进行汇总计算得到最后结果,并输出到分布式文件系统中。

  不同的Map任务之间不会进行通信,不同的Reduce任务之间也不会发生任何信息交换;用户不能显式地从一台机器向另一台继机器发送消息,所有的数据交换都是通过MapReduce框架自身去实现的。
  在MapReduce的整个执行过程中,Map任务的输入文件、Reduce任务的处理结果都是保存在分布式文件系统中的,而Map任务处理得到的中间结果则保存在本地存储(如磁盘)中。

5.2.2 MapReduce的各个执行阶段

  下面是一个MapReduce算法的执行过程:

  1. MapReduce框架使用InputFormat模块做Map前的预处理,比如,验证输入的格式是否符合输入定义;然后,将输入文件切分为逻辑上的多个InputSplit,InputSplit是MapReduce对文件进行处理和运算的输入单位,只是一个逻辑概念,每个InputSplit并没有对文件进行实际切割,只是记录了要处理的数据的位置和长度。

  1. 因为InputSplit是逻辑切分而非物理切分,所以,还需要通过RecordReader(RR)并根据InputSplit中的信息来处理InputSplit中的具体记录,加载数据并转换为适合Map任务读取的键值对,输入给Map任务。

  1. Map任务会根据用户自定义的映射规则,输出一系列的<key,value>作为中间结果。

  1. 为了让Reduce可以并行处理Map的结果,需要对Map的输出进行一定的分区、排序(Sort)、合并(Combine)和归并(Merge)等操作,得到<key,value-list>形式的中间结果,再交给对应的Reduce程序进行处理,这个过程称为Shuffle。

  1. Reduce以一系列<key,value-list>中间结果作为输入,执行用户定义的逻辑,输出结果给OutputFormat模块。

  1. OutputFormat模块会验证输出目录是否已经存在,以及输出结果类型是否符合配置文件中的配置类型,如果都满足,就输出Reduce的结果到分布式文件系统。

坚持坚持,这才刚开始,学习使我快乐!!

5.2.3 Shuffle过程详解

5.2.3.1 Shuffle过程简介

  Shuffle过程是MapReduce整个工作流程的核心环节,理解Shuffle过程的基本原理,对于理解MapReduce流程至关重要。

  所谓Shuffle,是指针对Map输出结果进行分区、排序和合并等处理,并交给Reduce的过程。因此,Shuffle过程分为Map端的操作Reduce端的操作

  1. 在Map端的Shuffle过程。Map的输出结果首先被写入缓存,当缓存满时,就启动溢写操作,把缓存中的数据写入磁盘文件,并清空缓存。当启动溢写操作时,首先需要把缓存中的数据进行分区,然后对每个分区的数据进行排序(Sort)和合并(Combine),之后再写入磁盘文件。每次溢写操作会生成一个新的磁盘文件,随着Map任务的执行,磁盘中就会生成多个溢写文件。在Map任务全部结束之前,这些溢写文件会被归并(Merge)成一个大的磁盘文件,然后,通知相应的Reduce任务来领取属于自己需要处理的数据。

  1. 在Reduce端的Shuffle过程。Reduce任务从Map端的不同Map机器领回属于自己需要处理的那部分数据,然后,对数据进行归并(Merge)后交给Reduce处理。

5.2.3.2 Map端的Shuffle过程

  Map端的Shuffle过程包括4个步骤:

  1. 输入数据和执行Map任务
      Map任务的输入数据一般保存在分布式文件系统(如GFS或HDFS)的文件块中,这些文件块的格式是任意的,可以是文档,也可以是二进制格式的。Map任务接受<key,value>作为输入后,按一定的映射规则转换成一批<key,value>进行输出。

  1. 写入缓存
      每个Map任务都会被分配一个缓存,Map的输出结果不是立即写入磁盘,而是首先写入缓存。在缓存中积累一定数量的Map输出结果以后,再一次性批量写入磁盘,这样可以大大减少对磁盘I/O的影响。因为,磁盘包含机械部件,它是通过磁头移动和盘片的转动来寻址定位数据的,每次寻址的开销很大,如果每个Map输出结果都直接写入磁盘,会引入很多次寻址开销,而一次性批量写入,就只需要一次寻址,连续写入,大大降低了开销。需要注意的是,在写入缓存之前,key与value值都会被序列化成字节数组。

  1. 溢写(分区、排序和合并)
      提供给MapReduce的缓存的容量是有限的,默认大小是100MB。随着Map任务的执行,缓存中Map结果的数量会不断增加,很快就会占满整个缓存,这时,就必须启动溢写(Spill)操作,把缓存中的内容一次性写入磁盘,并清空缓存。溢写的过程通常是由另外一个单独的后台线程来完成的,不会影响Map结果往缓存写入。但是,为了保证Map结果能够不停地持续写入缓存,不受溢写过程的影响,就必须让缓存中一直有可用的空间,不能等到全部占满才启动溢写过程,所以,一般会设置一个溢写比例,如0.8,也就是说,当100MB大小的缓存被填满80MB数据时,就启动溢写过程,把已经写入的80MB数据写入磁盘,剩余20MB空间供Map结果继续写入。
      但是,在溢写到磁盘之前,缓存中的数据首先会被分区(Partition)。缓存中的数据是<key,value>形式的键值对,这些键值对最终需要交给不同的Reduce任务进行并行处理。MapReduce通过Partitioner接口对这些键值对进行分区,默认采用的分区方式是采用Hash函数对key进行哈希后,再用Reduce任务的数量进行取模,可以表示成hash(key) mod R。其中,R表示Reduce任务的数量,这样,就可以把Map输出结果均匀地分配给这R个Reduce任务去并行处理了。当然,MapReduce也允许用户通过重载Partitioner接口来自定义分区方式。
      对于每个分区内的所有键值对,后台线程会根据key对它们进行内存排序(Sort),排序是MapReduce的默认操作。排序结束后,还包含一个可选的合并(Combine)操作。如果用户事先没有定义Combiner函数,就不用进行合并操作。如果用户事先定义了Combiner函数,则这个时候会执行合并操作,从而减少需要溢写到磁盘的数据量。
      所谓“合并”,是指将那些具有相同key的<key,value>的value加起来,比如,有两个键值对<"xmu",1>和<"xmu",1>,经过合并操作以后就可以得到一个键值对<"xmu",2>,减少了键值对的数量。这里需要注意,Map端的这种合并操作,其实和Reduce的功能相似,但是,由于这个操作发生在Map端,所以,我们只能称之为“合并”,从而有别于Reduce。不过,并非所有场合都可以使用Combiner,因为,Combiner的输出是Reduce任务的输入,Combiner绝不能改变Reduce任务最终的计算结果,一般而言,累加、最大值等场景可以使用合并操作。
      经过分区、排序以及可能发生的合并操作之后,这些缓存中的键值对就可以被写入磁盘,并清空缓存。每次溢写操作都会在磁盘中生成一个新的溢写文件,写入溢写文件中的所有键值对,都是经过分区和排序的。

  1. 文件归并
      每次溢写操作都会在磁盘中生成一个新的溢写文件,随着MapReduce任务的进行,磁盘中的溢写文件数量会越来越多。当然,如果Map输出结果很少,磁盘上只会存在一个溢写文件,但是,通常都会存在多个溢写文件。最终,在Map任务全部结束之前,系统会对所有溢写文件中的数据进行归并(Merge),生成一个大的溢写文件,这个大的溢写文件中的所有键值对,也是经过分区和排序的。
      所谓归并(Merge),是指对于具有相同key的键值对,会被归并成一个新的键值对。具体而言,对于若干个具有相同key的键值对<k1,v1>、<k1,v2>......,会被归并成一个新的键值对<k1,<V1,V2,...vn>>。
      另外,进行文件归并时,如果磁盘中已经生成的溢写文件的数量超过参数min.num.spills.for.combine的值时(默认值是3,用户可以修改这个值)。那么,就可以再次运行Combiner,对数据进行合并操作,从而减少写入磁盘的数据量。但是,如果磁盘中只有一两个溢写文件时,执行合并操作就会“得不偿失”,因为执行合并操作本身也需要代价,因此,不会运行Combiner。

  经过上述4个步骤以后,Map端的Shuffle过程全部完成,最终生成的一个大文件会被存放在本地磁盘。这个大文件中的数据是被分区的,不同的分区会被发送到不同的Reduce任务进行并行处理。

注意:JobTracker会一直监测Map任务的执行,当监测到一个Map任务完成后,就会立即通知相关的Reduce任务来“领取”数据,然后开始Reduce端的Shuffle过程。

如果把这段知识肝完,请自称为肝帝 ╮(╯▽╰)╭
5.2.3.3 Reduce端的Shuffle过程

  相对于Map端而言,Reduce端的Shuffle过程非常简单,只需要从Map端读取结果,然后执行归并操作,最后输送给Reduce任务进行处理,具体执行流程如下:

  1. “领取”数据
      Map端的Shuffle过程结束后,所有Map输出结果都保存在Map机器的本地磁盘上,Reduce任务需要把这些数据“领取”(Fetch)回来,存放到自己所在机器的本地磁盘上。因此,在每个Reduce任务真正开始之前,它大部分时间都在从Map端把属于自己处理那些分区的数据“领取”过来。
      每个Reduce任务会不断地通过RPC(Remote Procedure Call)向JobTracker询问Map任务是否已经完成;JobTracker监测到一个Map任务完成后,就会通知相关的Reduce任务来“领取”数据;一旦一个Reduce任务收到JobTracker通知,它就会到该Map任务所在机器上把属于自己处理的分区数据领取到本地磁盘中。一般系统中会存在多个Map机器,因此,Reduce任务会使用多个线程同时从多个Map机器领回数据。

  1. 归并数据
      从Map端领回的数据,会首先被存放在Reduce任务所在机器的缓存中,如果缓存被占满,就会像Map端一样被溢写到磁盘中。由于在Shuffle阶段,Reduce任务还没有真正开始执行,因此,这时可以把内存的大部分空间分配给Shuffle过程作为缓存。需要注意的是,系统中一般存在多个Map机器,所以,Reduce任务会从多个Map机器领回属于自己处理的那些分区的数据,因此,缓存中的数据是来自不同的Map机器的,一般会存在很多可以合并(Combine)的键值对。
      当溢写过程启动时,具有相同key的键值对会被归并(Merge),如果用户定义了Combiner,则归并后的数据还可以执行合并操作,减少写入磁盘的数据量。每个溢写过程结束后,都会在磁盘中生成一个溢写文件,因此,磁盘上会存在多个溢写文件。最终,当所有的Map端数据都已经被领回时,和Map端类似,多个溢写文件会被归并成一个大文件,归并的时候还会对键值对进行排序,从而使得最终大文件中的键值对都是有序的。当然,在数据很少的情形下,缓存就可以存储所有数据,就不需要把数据溢写到磁盘,而是直接在内存中执行归并操作,然后直接输出给Reduce任务。
      需要说明的是,把磁盘上的多个溢写文件归并成一个大文件,可能需要执行多轮归并操作。每轮归并操作可以归并的文件数量是由参数io.sort.factor的值来控制的(默认值是10,可以修改)。
      假设磁盘中生成了50个溢写文件,每轮可以归并10个溢写文件,则需要经过5轮归并,得到5个归并后的大文件。

  1. 把数据输入Reduce任务
      磁盘中经过多轮归并后得到的若干个大文件,不会继续归并成一个新的大文件,而是直接输入给Reduce任务,这样可以减少磁盘读写开销。由此,整个Shuffle过程顺利结束。接下来,Reduce任务会执行Reduce函数中定义的各种映射,输出最终结果,并保存到分布式文件系统中。

emmmmmmm,笔者吐槽,以上内容实在是太太太太太硬核了,估计今天吃完饭憋得上厕所都难受,大家都是打工人,自然感同身受。没事没事没事,下面WordCount的例子就有很多生动形象的图啦,很好理解的!!!大家坚持住,看完睡个好觉,红红火火恍恍惚惚哈哈哈。

5.3 以WordCount为例理解MapReduce

  首先,需要检查WordCount程序任务是否可以采用MapReduce来实现。在前文我们曾经提到,适合用MapReduce来处理的数据集,需要满足一个前提条件:待处理的数据集可以分解成许多小的数据集,而且每一个小数据集都可以完全并行地进行处理。在WordCount程序任务中,不同单词之间的频数不存在相关性,彼此独立,可以把不同的单词分发给不同的机器进行并行处理,因此,可以采用MapReduce来实现词频统计任务。

  其次,确定MapReduce程序的设计思路。思路很简单,把文件内容解析成许多个单词,然后把所有相同的单词聚集到一起最后,计算出每个单词出现的次数进行输出。

  最后,确定MapReduce程序的执行过程。把一个大文件切分成许多个分片,每个分片输入给不同机器上的Map任务,并行执行完成“从文件中解析出所有单词”的任务。Map的输入采用Hadoop默认的<key, value>输入方式,即文件的行号作为key,文件的一行作为valueMap的输出以单词作为key,1作为value,即<单词,1>,表示单词出现了1次。

  Map阶段完成后,会输出一系列<单词,1>这种形式的中间结果,然后,Shuffle阶段会对这些中间结果进行排序、分区,得到<key, value-list>的形式(比如<hadoop,<1,1,1,1,1>>),分发给不同的Reduce任务。Reduce任务接收到所有分配给自己的中间结果(一系列键值对)以后,就开始执行汇总计算工作,计算得到每个单词的频数并把结果输出到分布式文件系统。

好嘞好嘞,全是字的部分终于结束了,下面到了理解图部分,希望帮助大家理解吧,编者尽力去简单化啦。大家冲冲冲,胜利就在前面,看完这些图就能掌握MapReduce啦!!!

5.3.1 首先放一张WordCount实现过程图来控场

  那么问题来了,MapReduce是如何对这些大批量的数据进行处理计算的呢?

  答案当然是我们的old friend——HDFS

  看到这里,不知道朋友们有没有回想起HDFS的知识呢? 还记得NameNode和DataNode吗?

5.3.2 简易版MapReduce工作流程

5.3.3 数据分片

MapReduce的工作流程:

  • Inputformat的作用:加载、读取HDFS中的文件,对输入进行格式验证;将大文件切分成许多分片split,但此切分仅是逻辑上的切分,即逻辑定义每个split的起点和长度,并非真正意义的物理切分。

  • record reader:记录阅读器,根据split的位置和长度,从HDFS中的各个块读取相关分片,读取成<k,v>的形式。

5.3.4 WordCount详细讲解

  1. WordCount的数据分片

  1. split的Map流程

  1. Reduce流程

  1. WordCount的Map流程

  1. WordCount的Reduce流程

  1. Shuffle过程

5.3.5 详细版MapReduce工作流程

5.3.6 MapReduce的体系结构

5.3.6.1 Client(客户端)
  • 主要功能:负责提交作业,查看作业状态

  • 提交作业:用户编写的MapReduce程序通过Client提交到JobTracker端。

  • 查看作业状态:用户可通过Client提供的一些接口查看作业运行状态。

5.3.6.2 JobTracker(作业跟踪器)
  • 主要功能:负责资源监控、作业调度

  • 资源监控:JobTracker监控所有TaskTracker与Job的健康状况,一旦发现节点失效(通信失败或节点故障),就将相应的任务转移到其他节点。

  • 作业调度:JobTracker会跟踪任务的执行进度、资源使用量等信息,并将这些信息告诉任务调度器(TaskScheduler),而任务调度器会选择合适的(比较空闲)节点资源来执行任务。

5.3.6.3 TaskScheduler(任务调度器)
  • 执行具体的相关任务,一般接收JobTracker发送过来的命令。

  • 把一些自己的资源使用情况,以及任务的运行进度通过心跳的方式,也就是heartbeat发送给JobTracker。

5.3.6.4 TaskTracker(任务跟踪器)
  • TaskTracker会周期性地通过“心跳”,将本节点上资源的使用情况和任务的运行进度汇报给JobTracker,同时接收JobTracker发送过来的命令,并执行相应的操作(如启动新任务、杀死任务等)。

  • TaskTracker使用slot等量划分本节点上的资源量(CPU、内存等)。一个Task获取到一个slot后才有机会运行,而Hadoop调度器(TaskScheduler)的作用就是将各个TaskTracker上的空闲slot分配给Task使用。slot分为Map slot和Reduce slot两种,分别供MapTask和Reduce Task使用。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值