(2) 随机森林回归:填补缺失值的一种方法

专栏学习笔记与代码:https://github.com/LvSolar/ML20230605

我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值。面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好,即便我们其实并不知道缺失值的真实样貌。

在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均值,中值,或者其他最常用的数值填补到数据中,在这个案例中,我们将使用均值,0,和随机森林回归来填补缺失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳的缺失值填补方法。

1、导库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score

2、以波士顿数据集为例,导入完整的数据集并探索

dataset = load_boston()
dataset.data.shape  # 总共506*13=6578个数据
(506, 13)
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]  # 506
n_feature = X_full.shape[1]  # 13

3、为完整数据集制造缺失值

#首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就要有3289个数据缺失
rng = np.random.RandomState(0)
missing_rate = 0.5
n_missing_samples = int(np.floor(n_samples * n_feature * missing_rate))
#np.floor向下取整,返回.0格式的浮点数

#所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引
#如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可以利用索引来为数据中的任意3289个位置赋空值
#然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何
missing_features = rng.randint(0, n_feature, n_missing_samples)
missing_samples = rng.randint(0, n_samples, n_missing_samples)

X_missing = X_full.copy()
y_missing = y_full.copy()
X_missing[missing_samples, missing_features] = np.nan
X_missing = pd.DataFrame(X_missing)
#转换成DataFrame是为了后续方便各种操作,numpy对矩阵的运算速度快到拯救人生,但是在索引等功能上却不如pandas来得好用

4、使用0和均值填补缺失值

# 使用均值填补
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
X_missing_mean = imp_mean.fit_transform(X_missing)

# 使用0填补
imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant", fill_value=0)
X_missing_0 = imp_0.fit_transform(X_missing)

5、使用随机森林填补缺失值

"""
使用随机森林回归填补缺失值

任何回归都是从特征矩阵中学习,然后求解连续型标签y的过程,之所以能够实现这个过程,是因为回归算法认为,特征
矩阵和标签之前存在着某种联系。实际上,标签和特征是可以相互转换的,比如说,在一个“用地区,环境,附近学校数
量”预测“房价”的问题中,我们既可以用“地区”,“环境”,“附近学校数量”的数据来预测“房价”,也可以反过来,
用“环境”,“附近学校数量”和“房价”来预测“地区”。而回归填补缺失值,正是利用了这种思想。

对于一个有n个特征的数据来说,其中特征T有缺失值,我们就把特征T当作标签,其他的n-1个特征和原本的标签组成新
的特征矩阵。那对于T来说,它没有缺失的部分,这部分数据既有标签也有特征,可以用作我们训练模式;而它缺失的部
分,只有特征没有标签,就是我们需要预测的部分。

特征T不缺失的值对应的其他n-1个特征 + 本来的标签:X_train
特征T不缺失的值:Y_train

特征T缺失的值对应的其他n-1个特征 + 本来的标签:X_test
特征T缺失的值:未知,我们需要预测的Y_test 。预测出来后进行填补

这种做法,对于某一个特征大量缺失,其他特征却很完整的情况,非常适用。

那如果数据中除了特征T之外,其他特征也有缺失值怎么办?
答案是遍历所有的特征,从缺失最少的开始进行填补(因为填补缺失最少的特征所需要的准确信息最少)。
填补一个特征时,先将其他特征的缺失值用0代替,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填
补下一个特征。每一次填补完毕,有缺失值的特征会减少一个,所以每次循环后,需要用0来填补的特征就越来越少。当
进行到最后一个特征时(这个特征应该是所有特征中缺失值最多的),已经没有任何的其他特征需要用0来进行填补了,
而我们已经使用回归为其他特征填补了大量有效信息,可以用来填补缺失最多的特征。
遍历所有的特征后,数据就完整,不再有缺失值了。

你学废了吗?
"""
X_missing_reg = X_missing.copy()
# argsort 返回的是元素值从小到大排序后的对应索引值 从缺失值最少的特征开始填充
sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values

for i in sortindex:
    # 构建新特征矩阵和新标签
    df = X_missing_reg
    fillc = df.iloc[:, i]
    df = pd.concat([df.iloc[:, df.columns != i], pd.DataFrame(y_full)], axis=1)

    # 在新特征矩阵中,对含有缺失值的列进行0的填充
    df_0 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value=0).fit_transform(df)

    # 找出训练集和测试集
    Ytrain = fillc[fillc.notnull()]
    Ytest = fillc[fillc.isnull()]
    Xtrain = df_0[Ytrain.index, :]
    Xtest = df_0[Ytest.index, :]

    # 使用随机森林回归填补缺失值
    rfc = RandomForestRegressor(n_estimators=100)
    rfc = rfc.fit(Xtrain, Ytrain)
    Ypredict = rfc.predict(Xtest)

    # 将填补好的特征返回到我们的原始的特征矩阵中
    X_missing_reg.loc[X_missing_reg.iloc[:, i].isnull(), i] = Ypredict

6、对填补好的数据进行建模

# 对所有数据进行建模,取得MSE结果
X = [X_full, X_missing_mean, X_missing_0, X_missing_reg]

mse = []
std = []
for x in X:
    estimator = RandomForestRegressor(random_state=0, n_estimators=100)
    scores = cross_val_score(estimator, x, y_full, scoring='neg_mean_squared_error', cv=5).mean()
    mse.append(scores * -1)

7、用所得结果画出条形图

x_labels = ['Full data',
            'Zero Imputation',
            'Mean Imputation',
            'Regressor Imputation']
colors = ['r', 'g', 'b', 'orange']
plt.figure(figsize=(12, 6))
ax = plt.subplot(111)
for i in np.arange(len(mse)):
    ax.barh(i, mse[i], color=colors[i], alpha=0.6, align='center')
ax.set_title('Imputation Techniques with Boston Data')
ax.set_xlim(left=np.min(mse) * 0.9, right=np.max(mse) * 1.1)
ax.set_yticks(np.arange(len(mse)))
ax.set_xlabel('MSE')
ax.set_yticklabels(x_labels)
plt.show()


可见在进行缺失值处理时使用随机森林进行填补,比单纯使用0或者均值填补效果要好。

文章参考于该up主:https://space.bilibili.com/2932207

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值