Hive基本概念
什么是Hive
- Hive简介
- Hive:由Facebook 开源用于解决海量结构化日志的数据统计工具。
- Hive 是基于Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并
提供类SQL 查询功能。
- Hive 本质: 将HQL 转化成MapReduce 程序
- Hive 处理的数据存储在HDFS
- Hive 分析数据底层的实现是MapReduce
- 执行程序运行在Yarn 上
Hive优缺点
优点
- 操作接口采用类SQL 语法,提供快速开发的能力(简单、容易上手)。
- 避免了去写MapReduce,减少开发人员的学习成本。
- Hive 的执行延迟比较高,因此Hive 常用于数据分析,对实时性要求不高的场合。
- Hive 优势在于处理大数据,对于处理小数据没有优势,因为Hive 的执行延迟比较高。
- Hive 支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
缺点
- Hive 的HQL 表达能力有限
- 迭代式算法无法表达
- 数据挖掘方面不擅长,由于MapReduce 数据处理流程的限制,效率更高的算法却无法实现。
- Hive 的效率比较低
- Hive 自动生成的MapReduce 作业,通常情况下不够智能化
- Hive 调优比较困难,粒度较粗
Hive架构原理
- 用户接口:Client
CLI(command-line interface)、JDBC/ODBC(jdbc 访问hive)、WEBUI(浏览器访问hive) - 元数据:Metastore
- 元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
- 默认存储在自带的derby 数据库中,推荐使用MySQL 存储Metastore
- Hadoop
使用HDFS 进行存储,使用MapReduce 进行计算。 - 驱动器:Driver
- 解析器(SQL Parser):将SQL 字符串转换成抽象语法树AST,这一步一般都用第
三方工具库完成,比如antlr;对AST 进行语法分析,比如表是否存在、字段是否存在、SQL
语义是否有误。 - 编译器(Physical Plan):将AST 编译生成逻辑执行计划。
- 优化器(Query Optimizer):对逻辑执行计划进行优化。
- 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive 来
说,就是MR/Spark。
- 解析器(SQL Parser):将SQL 字符串转换成抽象语法树AST,这一步一般都用第
- Hive 通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
Hive和数据库的比较
- 由于 Hive 采用了类似SQL 的查询语言 HQL(Hive Query Language),因此很容易将 Hive 理解为数据库。其实从结构上来看, Hive 和数据库除了拥有类似的查询语言,再无类似之处。
- 本文将从多个方面来阐述 Hive 和数据库的差异。数据库可以用在Online的应用中,但是Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。
查询语言
- 由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL 。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。
数据更新
- 由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。 因此,Hive中不建议 对数据的改写,所有的数据都是在加载的时候确定好的。 而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO VALUES 添加数据,使用 UPDATE SET 修改数据。
执行延迟
- Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的 延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。
数据规模
- 由于Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
Hive安装
Hive安装地址
Hive安装部署
安装Hive
启动并使用Hive
MySQL安装
Hive元数据配置到MySQL
拷贝驱动
配置 Metastore到 MySQL
再次启动 Hive
使用元数据服务的方式访问 Hive
使用 JDBC方式访问 Hive
Hive常用交互 命令
Hive其他命令操作
Hive常见属性配置
Hive运行日志信息配置
打印 当前库 和 表头
参数配置方式
Hive数据类型
基本数据类型
对于Hive 的 String 类型相当于数据库的 varchar 类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储 2GB 的字符数。
集合数据类型
Hive有三种复杂数据类型 ARRAY 、 MAP 和 STRUCT 。 ARRAY 和 MAP 与 Java 中的 Array和 Map 类似,而 STRUCT 与 C 语言中的 Struct 类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。
案例实操
假设某表有如下一行, 我们用 JSON 格式来表示其数据结构。在 Hive 下访问的格式为
{
"name": "songsong",
"friends": ["bingbing" , "lili"] , //列表 Array,
"children": { //键值 Map,
"xiao song": 18 ,
"xiaoxiao song": 19
}
"address": { //结构 Struct,
"street": "hui long guan",
"city": "beijing"
}
}
类型转化
- Hive的原子数据类型是可以进行隐式转换的,类似于 Java 的类型转换,例如某表达式使用 INT 类型, TINYINT 会自动转换为 INT 类型,但是 Hive 不会进行反向转化,例如,某表达式使用 TINYINT 类型, INT 不会自动转换为 TINYINT 类型,它会返回错误,除非使用 CAST操作。
- 隐式类型转换规则如下
- 任何整数类型都可以隐式地转换为一个范围更广的类型,如 TINYINT 可以转换成INT,INT 可以转换成 BIGINT。
- 所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。
- TINYINT、SMALLINT、INT都可以转换为FLOAT。
- BOOLEAN类型不可以转换为任何其它的类型。
- 可以使用CAST操作显示进行数据类型转换
- 例如CAST(‘1’ AS INT)将把字符串’1’ 转换成整数1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。
DDL数据定义
创建数据库
查询数据库
显示数据库
查看数据库详情
切换当前数据库
修改数据库
删除数据库
创建表
管理表
理论
- 默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive 会(或多或少地)控制着数据的生命周期。 Hive 默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如, ,/user/hive/ 所 定义的目录的子目录下。
- 当我们删除一个管理表时,Hive 也会删除这个表中数据。 管理表不适合和其他工具共享数据。
外部表
理论
- 因为表是外部表所以 Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。
管理表和外部表的使用场景
- 每天将收集到的网站日志定期流入HDFS 文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过 SELECT+INSERT 进入内部表。
管理表与 外部表的互相转换
修改表
重命名表
增加、修改和删除表分区
增加 /修改 /替换列信息
删除表
DML数据操作
数据导入
向表中装载数据( Load)
通过查询语句向表中插入数据( Insert)
查询语句中 创建表并加载数据( As Select)
创建表时通过 Location指定加载数据路径
Import数据到指定 Hive表中
数据导出
Insert导出
Hadoop命令导出到本地
Hive Shell 命令导出
Export导出到 HDFS上
Sqoop导出
清除表中数据( Truncate)
查询
基本查询( Select…From)
全表和特定列查询
列别名
算术运算符
常用函数
Limit语句
Where语句
比较运算符( Between/In/ Is Null)
Like和 RLike
逻辑运算符( And/Or/Not)
分组
Group By语句
Having语句
Join语句
等值 Join
表的别名
内连接
左外连接
右外连接
满外连接
多表连接
笛卡尔积
排序
全局排序( Order By)
按照别名排序
多个列排序
每个 Reduce内部排序( Sort By)
分区( Distribute By)
Cluster By
分区表和分桶表
分区表
分区表基本操作
二级分区
动态分区调整
分桶表
抽样查询
函数
系统内置函数
常用内置函数
空字段赋值
CASE WHEN THEN ELSE END
行转列
列转行
窗口函数(开窗函数)
Rank
其他常用函数
自定义函数
自定义 UDF函数
自定义 UDTF 函数
压缩和存储
Hadoop压缩配置
MR支持的压缩编码
压缩参数配置
开启 Map输出阶段压缩(MR引擎)
开启 Reduce输出阶段压缩
文件存储格式
列式存储和行式存储
TextFile格式
Orc格式
Parquet格式
主流文件存储格式对比实验
存储和压缩结合
测试存储和压缩
企业级调优
执行计划( Explain)
Fetch抓取
本地模式
表的优化
小表大表Join(MapJOIN)
大表 Join 大表
Group By
Count(Distinct) 去重统计
笛卡尔积
行列过滤
分区
分桶
合理设置 Map及 Reduce数
复杂文件增加 Map数
小文件进行合并
合理设置 Reduce数
并行执行
严格模式
JVM重用
压缩
Hive实战
需求描述
数据结构
准备工作
准备表
业务分析
统计视频观看数 Top10
统计视频类别热度 Top10
统计出视频观看数最高的 20个视频的所属类别以及类别包含Top20视频的个数
统计视频观看数 Top50所关联视频的所属类别排序
统计每个类别中的视频热度 Top10,以 Music为例
常见错误及解决方案
如果更换 Tez 引擎后,执行任务卡住,可以尝试调节容量调度器的资源调度策略
将HADOOP_HOME/etc/hadoop/ capacity scheduler.xml 文件中的
<property>
<name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
<value>0.1</value>
<description>
Maximum percent of resources in the cluster which can be used to run
application masters i.e. controls number of concurrent running
applications.
</description>
</property>
连接不上 mysql数据库
- 导错驱动包 ,应该把 mysql-connector-java-5.1.27-bin.jar导入 /opt/module/hive/lib的 不是这个包。错把 mysqlmysql-connectorconnector-javajava-5.1.27.tar.gz 导入 hive/lib 包下。
- 修改 user 表中的主机名称没有都修改为 %,而是修改为 localhost
hive 默认的输入格式处理是 CombineHiveInputFormat ,会对小文件进行合并。
不能执行 mapreduce程
可能是 hadoop的 yarn没开启。
启动 mysql服务时 ,报 MySQL server PID file could not be found! 异常 。
在/var/lock/subsys/mysql路径 下创建 hadoop102.pid,并在文件中添加内容 :4396
报 service mysql status MySQL is not running, but lock file (/var/lock/subsys/mysql[失败 ])异 常。
解决方案
在 /var/lib/mysql 目录下创建 -rw-rw----. 1 mysql mysql 5 12月 22 16:41 hadoop102.pid 文件 并修改权限为 777。
JVM堆内存溢出
描述
java.lang.OutOfMemoryError: Java heap space
解决
在 yarn-site.xml中加入如下代码
虚拟内存限制
在 yarn-site.xml中添加如下配置 :