PubMed 200k RCT数据集简介
PubMed 200k RCT是由Franck Dernoncourt和Ji Young Lee于2017年发布的一个大规模医学文献摘要数据集。该数据集源自PubMed数据库,专门用于连续句子分类任务,具有以下特点:
- 包含约20万篇随机对照试验(RCT)的摘要,总计230万个句子
- 每个摘要中的每个句子都被标注了其在摘要中的角色,包括背景、目标、方法、结果和结论5个类别
- 提供了两个版本:完整版(PubMed 200k RCT)和数字替换为@符号的版本
- 同时提供了一个较小的子集(PubMed 20k RCT),包含2万篇摘要
该数据集的发布有两个主要目的:
- 为短文本序列分类任务提供一个大规模的高质量数据集,以推动相关算法的发展。
- 从应用角度来看,帮助研究人员开发更好的工具,以提高文献阅读效率,尤其是在医学等摘要较长的领域。
数据集详细信息
PubMed 200k RCT数据集的主要特征如下:
- 规模: 约20万篇RCT摘要,230万个句子
- 标注: 每个句子标注为5个类别之一(背景、目标、方法、结果、结论)
- 格式: 提供原始版本和数字替换版本
- 子集: 包含PubMed 20k RCT小规模子集
- 来源: 基于2016年版MEDLINE/PubMed基线数据库构建
数据集文件组织如下:
PubMed_200k_RCT/
├── train.7z # 训练集(压缩文件)
├── dev.txt # 开发集
└── test.txt # 测试集
PubMed_200k_RCT_numbers_replaced_with_at_sign/
├── tr