Super-JSON-Mode入门指南 - 加速结构化输出生成的利器

Super-JSON-Mode: 加速结构化输出生成的利器

Super-JSON-Mode是一个强大的Python框架,旨在通过并行化和优化提高大型语言模型(LLM)生成结构化JSON输出的效率。本文将为您介绍这个项目的主要特性、安装方法、使用示例以及未来发展方向,帮助您快速上手这个高效的JSON生成工具。

主要特性

  1. 高效并行生成: 将目标schema拆分成原子组件,并行执行生成任务。

  2. 支持多种LLM: 兼容OpenAI API、Hugging Face Transformers和vLLM等多种LLM。

  3. 显著提升性能: 相比朴素的JSON生成pipeline,速度最高可提升10倍。

  4. 更加稳定可靠: 降低解析错误的概率,提高输出的一致性。

Super-JSON-Mode工作原理图

安装方法

Super-JSON-Mode的安装非常简单,您可以通过以下两种方式之一进行安装:

  1. 使用pip安装:
pip install super-json-mode
  1. 手动安装:
git clone https://github.com/varunshenoy/super-json-mode
cd super-json-mode
pip install -r requirements.txt

使用示例

下面是一个使用OpenAI API的简单示例:

from superjsonmode.integrations.openai import StructuredOpenAIModel
from pydantic import BaseModel
import time

model = StructuredOpenAIModel()

class Character(BaseModel):
    name: str
    genre: str
    age: int
    race: str
    occupation: str
    best_friend: str
    home_planet: str

prompt_template = """{prompt}
Please fill in the following information about this character for this key. Keep it succinct. It should be a {type}.
{key}: """

prompt = """Luke Skywalker is a famous character."""

start = time.time()
output = model.generate(
    prompt,
    extraction_prompt_template=prompt_template,
    schema=Character,
    batch_size=7,
    stop=["\n\n"],
    temperature=0,
)

print(f"Total time: {time.time() - start}")
print(output)

未来发展方向

Super-JSON-Mode的开发团队计划在以下几个方面继续改进:

  1. 质量分析: 开发更严格的方法来评估输出质量。
  2. 结构化采样: 实现类似JSONFormer的logits掩码,以强制执行类型约束。
  3. 依赖图支持: 处理schema中键之间的依赖关系。
  4. 本地模型支持: 集成Llama.cpp等本地推理框架。
  5. TRT-LLM支持: 集成更高性能的TRT-LLM框架。

结语

Super-JSON-Mode为开发者提供了一个强大的工具,可以显著提高LLM生成结构化JSON输出的效率。无论您是在构建AI驱动的应用程序,还是需要从非结构化文本中提取结构化数据,Super-JSON-Mode都能为您提供valuable的帮助。欢迎访问项目GitHub页面了解更多详情,并为这个开源项目做出贡献!

Super-JSON-Mode性能对比图

通过本文的介绍,相信您已经对Super-JSON-Mode有了初步的了解。这个强大的工具不仅可以提高您的开发效率,还能为您的AI项目带来更好的性能和稳定性。让我们一起期待Super-JSON-Mode的未来发展,共同推动AI技术的进步!

文章连接:www.dongaigc.com/a/super-json-mode-guide-accelerate-output
https://www.dongaigc.com/a/super-json-mode-guide-accelerate-output

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值