有效字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
示例 1: 输入: s = “anagram”, t = “nagaram” 输出: true
示例 2: 输入: s = “rat”, t = “car” 输出: false
说明: 你可以假设字符串只包含小写字母。
方法
字母是有限个的,所以用简单的hash表结构—数组
class Solution {
public boolean isAnagram(String s, String t) {
int[] record=new int[26];
for(char c:s.toCharArray()){
record[c-'a']+=1;
}
for(char c:t.toCharArray()){
record[c-'a']-=1;
}
for(int i: record){
//数组里的元素肯定是0
if(i!=0) return false;
}
return true;
}
}
数组交集
方法:
交集个数不确定:用set
class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
//先把num1放入set1==>num2,迭代nums2,顺便看看set1有没有一样的元素,有就存
HashSet<Integer> set=new HashSet<>();
for(int i:nums1){
set.add(i);
}
//返回的是数组,但是我不知道初始大小
HashSet<Integer> resultSet=new HashSet<>();
for(int i:nums2){
if(set.contains(i)){
resultSet.add(i);
}
}
int[] result=new int[resultSet.size()];
int index=0;
for(int i:resultSet){
result[index++]=i;
}
return result;
}
}
快乐数
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例:
输入:19
输出:true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
方法:
注意这里每次的计算是不能重复的,一重复就是死循环,考虑用set
class Solution {
public boolean isHappy(int n) {
//在得到下一个数的时候,设置一个方法
//要记住,如果得到下一个数和之前计算出的任何一个数重复了就是死循环,不然它一定可以得到1
//hashset记录计算的结果
HashSet<Integer> record=new HashSet<>();
while(n!=1&&!record.contains(n)){//n不是1和没有出现死循环
record.add(n);
n=getNextNum(n);
}
//循环出来了,n是不是1(死循环出来就不是)
return n==1;
}
public int getNextNum(int n){
int result=0;
while(n>0){
int temp=n%10;//个位
result+=temp*temp;
n=n/10;
}
return result;
}
}