疯狂膜拜!那些被大厂优化的程序员们,小白也能看明白

本文探讨了分布式锁在确保多进程访问资源一致性中的作用,特别是在不允许错误的场景下。介绍了二叉树的基本概念,包括满二叉树、完全二叉树和斜树的定义及特点,以及二叉树的遍历方式。同时分享了面试经验和相关技术笔试题,帮助读者巩固数据结构知识并提升面试技巧。
摘要由CSDN通过智能技术生成

你真的需要分布式锁吗?

用到分布式锁说明遇到了多个进程共同访问同一个资源的问题。一般是在两个场景下会防止对同一个资源的重复访问:

  • **提高效率。**比如多个节点计算同一批任务,如果某个任务已经有节点在计算了,那其他节点就不用重复计算了,以免浪费计算资源。不过重复计算也没事,不会造成其他更大的损失。也就是允许偶尔的失败。

  • **保证正确性。**这种情况对锁的要求就很高了,如果重复计算,会对正确性造成影响。这种不允许失败。

引入分布式锁势必要引入一个第三方的基础设施,比如 MySQL,Redis,Zookeeper 等。这些实现分布式锁的基础设施出问题了,也会影响业务,所以在使用分布式锁前可以考虑下是否可以不用加锁的方式实现?不过这个不在本文的讨论范围内,本文假设加锁的需求是合理的,并且偏向于上面的第二种情况,为什么是偏向?因为不存在 100% 靠谱的分布式锁,看完下面的内容就明白了。

二叉树

定义

二叉树n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。

图解

二叉树特点

由二叉树定义以及图示分析得出二叉树有以下特点:

  1. 每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。
  2. 左子树和右子树是有顺序的,次序不能任意颠倒。
  3. 即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。
二叉树性质

由二叉树定义以及图示分析得出二叉树有以下性质:

  1. 若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:

  • 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
  • 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
  • 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。

斜树

定义

斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。

满二叉树

图解

定义

满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。

满二叉树的特点

满二叉树的特点有:

  1. 叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
  2. 非叶子结点的度一定是2。
  3. 在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。

完全二叉树

图解

定义

完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。

完全二叉树特点

特点

  1. 叶子结点只能出现在最下层和次下层。
  2. 最下层的叶子结点集中在树的左部。
  3. 倒数第二层若存在叶子结点,一定在右部连续位置。
  4. 如果结点度为1,则该结点只有左孩子,即没有右子树。
  5. 同样结点数目的二叉树,完全二叉树深度最小。
  6. :满二叉树一定是完全二叉树,但反过来不一定成立。

二叉树的存储结构

定义

二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。

图解

如图一棵完全二叉树按照顺序存储:

二叉树遍历

定义

二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。

访问次序

二叉树的访问次序可以分为四种:

  1. 前序遍历 根结点 > 左子树 > 右子树
  2. 中序遍历 左子树> 根结点 > 右子树
  3. 后序遍历 左子树 > 右子树 > 根结点
  4. 层序遍历 仅仅需按层次遍历就可以
图解

前序遍历
定义

前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。

遍历流程
1、从根结点出发,则第一次到达结点A,故输出A;
2、继续向左访问,第一次访问结点B,故输出B;
3、按照同样规则,输出D,输出H;
4、当到达叶子结点H,返回到D,此时已经是第二次到达D,故不在输出D,进而向D右子树访问,D右子树不为空,则访问至I,第一次到达I,则输出I;
5、I为叶子结点,则返回到D,D左右子树已经访问完毕,则返回到B,进而到B右子树,第一次到达E,故输出E;
6、向E左子树,故输出J;
7、按照同样的访问规则,继续输出C、F、G;
遍历结果

前序遍历输出为:ABDHIEJCFG

中序遍历
定义

中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。

遍历流程
1、从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
2、到达H,H左子树为空,则返回到H,此时第二次访问H,故输出H;
3、H右子树为空,则返回至D,此时第二次到达D,故输出D;
4、由D返回至B,第二次到达B,故输出B;
5、按照同样规则继续访问,输出J、E、A、F、C、G;
遍历结果

中序遍历输出为:HDIBJEAFCG

最后

分享一套我整理的面试干货,这份文档结合了我多年的面试官经验,站在面试官的角度来告诉你,面试官提的那些问题他最想听到你给他的回答是什么,分享出来帮助那些对前途感到迷茫的朋友。

面试经验技巧篇
  • 经验技巧1 如何巧妙地回答面试官的问题
  • 经验技巧2 如何回答技术性的问题
  • 经验技巧3 如何回答非技术性问题
  • 经验技巧4 如何回答快速估算类问题
  • 经验技巧5 如何回答算法设计问题
  • 经验技巧6 如何回答系统设计题
  • 经验技巧7 如何解决求职中的时间冲突问题
  • 经验技巧8 如果面试问题曾经遇见过,是否要告知面试官
  • 经验技巧9 在被企业拒绝后是否可以再申请
  • 经验技巧10 如何应对自己不会回答的问题
  • 经验技巧11 如何应对面试官的“激将法”语言
  • 经验技巧12 如何处理与面试官持不同观点这个问题
  • 经验技巧13 什么是职场暗语

面试真题篇
  • 真题详解1 某知名互联网下载服务提供商软件工程师笔试题
  • 真题详解2 某知名社交平台软件工程师笔试题
  • 真题详解3 某知名安全软件服务提供商软件工程师笔试题
  • 真题详解4 某知名互联网金融企业软件工程师笔试题
  • 真题详解5 某知名搜索引擎提供商软件工程师笔试题
  • 真题详解6 某初创公司软件工程师笔试题
  • 真题详解7 某知名游戏软件开发公司软件工程师笔试题
  • 真题详解8 某知名电子商务公司软件工程师笔试题
  • 真题详解9 某顶级生活消费类网站软件工程师笔试题
  • 真题详解10 某知名门户网站软件工程师笔试题
  • 真题详解11 某知名互联网金融企业软件工程师笔试题
  • 真题详解12 国内某知名网络设备提供商软件工程师笔试题
  • 真题详解13 国内某顶级手机制造商软件工程师笔试题
  • 真题详解14 某顶级大数据综合服务提供商软件工程师笔试题
  • 真题详解15 某著名社交类上市公司软件工程师笔试题
  • 真题详解16 某知名互联网公司软件工程师笔试题
  • 真题详解17 某知名网络安全公司校园招聘技术类笔试题
  • 真题详解18 某知名互联网游戏公司校园招聘运维开发岗笔试题

需要这份文档的朋友可以点击蓝色传送门即可免费获取!

资料整理不易,点个关注再走吧

6 某知名互联网公司软件工程师笔试题

  • 真题详解17 某知名网络安全公司校园招聘技术类笔试题
  • 真题详解18 某知名互联网游戏公司校园招聘运维开发岗笔试题

[外链图片转存中…(img-0j107tZ4-1619428999600)]

需要这份文档的朋友可以点击蓝色传送门即可免费获取!

资料整理不易,点个关注再走吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值