基于Unet网络的无人机全景图的耕地提取模型

基于Unet网络的无人机全景图的耕地提取模型

Unet模型适合特征少,需要浅层特征的全景农田数据集
针对RGB的高明区无人机全景图的浅层特征数据集,利用Unet模型架构的优势提取影像的耕地目标,解决了复杂场景下的目标提取。

图片1
在这里插入图片描述

图片2

在这里插入图片描述

权重文件下载

训练所需的权值可在百度网盘中下载,下载后放到model。

链接: https://pan.baidu.com/s/1A22fC5cPRb74gqrpq7O9-A

在这里插入图片描述

主要步骤

  • 将存放全景图像的panorama文件夹下所有全景图切割并提取主要绿地作为农田图像;
    训练前将图片文件放在Datasets文件夹下的JPEGImages中;
  • 训练前将标签文件放在Datasets文件夹下的SegmentationClass中;
  • 在训练前利用annotation.py文件生成对应的txt;
  • 修改train.py的num_classes为分类个数+1,这里只有农田类别,因此该参数设置为1;
  • 运行train.py即可开始训练;

修改unet.py中的model_path和num_classes,打开predicet.py根据测试模型更改参数,进行预测测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值