一、二维向量叉乘公式:a(x1,y1),b(x2,y2),则a×b=(x1y2-x2y1)
二、a×b=|a||b|sinθ
三、矩阵形式
给定直角坐标系的单位向量 i,j,k满足下列等式:
i ×j=k;j ×k = i ;k ×i =j ;
通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设
a = [a1, a2, a3] =a1 i+ a2j+ a3k b= [b1,b2,b3]=b1i+ b2j+ b3k ;
则 a × b= [a2b3-a3b2,a3b1-a1b3, a1b2-a2b1]
四、代数规则:
1、反交换律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性和与雅可比恒等式分别表明:具有向量加法和叉积的 R3 构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。