一、题目描述
二、解题思路
1. 设长、宽和高分别为L、W和H,不妨令L<=W<=H;
2. 根据对称性,当三者各不相同时,有6种解法;当三者都相同时有1种解法,剩下的只有两者相同时有3种解法;
3. 先求出n所有的因子,若一个数n有因子,则在
n
\sqrt{n}
n下就应该有,我们先求出n的前半部分的因子,存入一个数组,再遍历一遍数组即可获得所有的因子;(注意:所有因子不能相同,最好检查一遍,否则会重复计算。)
4. 两层循环选L和W,H可由
n
÷
(
L
×
W
)
n\div(L\times W)
n÷(L×W)导出,最终累加即得答案。
三、具体实现
#include<bits/stdc++.h>// 货物摆放
using namespace std;
typedef long long ll;
int judge(ll L,ll W,ll H){
if(L!=W && L!=H && W!=H){
return 6;
}
else if(L==W && W==H){
return 1;
}
else{
return 3;
}
}
int main(){
ll n = 2021041820210418;
ll a[201],i,j,k,pos=0,ans=0,cnt=0;
for(i=1;i*i<=n;i++){
if(n%i==0){
a[pos++]=i;
}
}
for(i=pos-1;i>=0;--i){
a[pos++]=n/a[i];
} // 注意因子不能重复,否则可能会多算
for(i=0;a[i]<=pow(n,1/3.0);i++){
for(j=i;a[j]<=sqrt(n/a[i]);j++){
ll t=a[i]*a[j];
if(n%t==0 && n/t>=a[j]){
ans+=judge(a[i],a[j],n/t);
}
}
}
printf("%lld",ans); // 2430
return 0;
}
以上仅属个人见解,若有错误之处,还望指出,谢谢!