#酒店数据预处理 import pandas as pd import numpy as np #读取香港酒店数据 df = pd.read_excel('./香港酒店数据.xlsx') #删除名字是Unnamed: 0列 df = df.drop('Unnamed: 0',axis=1) #print(df.head()) #重置索引 df.index = range(len(df)) #重新设置列名称为'名字','类型','城市','地区','地点','评分','评分人数','价格' rename = ['名字','类型','城市','地区','地点','评分','评分人数','价格'] df.columns = rename #查找出所有类型为“休闲度假”并且在湾仔地区的酒店 print(df[(df['类型'] == '休闲度假') & (df['地区'] =='湾仔')] ) #查找出所有地址在观塘或者油尖旺,评分大于4的酒店 print(df[((df['地区'] == '观塘') | (df['地区'] == '油尖旺')) & (df['评分'] > 4)]) #找出缺失值数据 print(df[df['名字'].isnull()]) print(df[df['类型'].isnull()]) print(df[df['城市'].isnull()]) print(df[df['地区'].isnull()]) print(df[df['地点'].isnull()]) print(df
酒店数据分析预处理pandas
最新推荐文章于 2024-04-21 23:25:16 发布
本文介绍了如何利用Python的pandas库对酒店行业的数据进行预处理,包括数据清洗、缺失值处理、异常值检测和转换,为后续的数据分析和挖掘奠定基础。
摘要由CSDN通过智能技术生成