酒店数据分析pandas

该篇博客详细展示了如何利用Python的Pandas库对酒店数据进行预处理、排序、统计分析,包括评分、价格、地区等多个关键指标的计算,如平均价格、评分分布、地区占比等,还涉及到了数据的相关性、协方差分析以及数据分组统计等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd

#读取保存的预得理好的数据
df = pd.read_excel('./酒店数据1.xlsx')
df = df.drop('Unnamed: 0',axis=1)
#查看“评分”的格式
print(df['评分'].dtype)
#df['评分'] = df['评分'].astype(np.int64)

#分别对评分进行升序和降序排序

df_sores_up = df.sort_values(by='评分',ascending=False)
print(df_sores_up)
df_sores_down = df.sort_values(by='评分',ascending=False)[::-1]
print(df_sores_down)

#对酒店按照价格进行排名
df_price_up = df.sort_values(by='价格',ascending=False)
print(df_price_up)

#计算“油尖旺”地区的均价
print('计算“油尖旺”地区的均价')
print(df['价格'].groupby(df['地区']).mean()['油尖旺'])
#print(df[df['地区'] == '油尖旺']['价格'].mean())


#对酒店数据进行描述性统计
print(df.describe())


#所有价格的均值方差,最大最小值,中值
print('所有价格的均值方差')
print(df['价格'].std())#均值方差
print('所有价格的最大值')
print(df['价格'].max())#最大值
print('所有价格的最小值')
print(df['价格'].min())#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值