题目描述
给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满 i < j 且 a[i] > a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000
输入样例:
6
2 3 4 5 6 1
输出样例:
5
解题报告
题意理解
这道题目就是让我们求解一个数组中的逆序对个数.
算法处理
求解逆序对问题,实际上有三种算法可以处理,分别是冒泡算法,归并排序,以及树状数组求解.
这里显然我们可以用性价比最高,代码最好写,效率特高的归并排序算法.
关于归并排序算法,各位看官可以点击这里哦
我们要注意一点,就是当我们发现填充第二个数组中的数,加入备用数组的使用,都要统计mid−i+1
,因为此时此刻,我们第一个数组中剩余的所有数,都会和它构成逆序对.
代码求解
#include <iostream>
using namespace std;
const int N = 1e6 + 10;
int a[N], tmp[N];
void merge_sort(int q[], int l, int r)
{
if (l >= r) return;
int mid = l + r >> 1;
merge_sort(q, l, mid), merge_sort(q, mid + 1, r);
int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
else tmp[k ++ ] = q[j ++ ];
while (i <= mid) tmp[k ++ ] = q[i ++ ];
while (j <= r) tmp[k ++ ] = q[j ++ ];
for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}
int main()
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
merge_sort(a, 0, n - 1);
for (int i = 0; i < n; i ++ ) printf("%d ", a[i]);
return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int N=100000 +100;
#define int long long
#define fir(i,a,b) for(int i=a;i<=b;i++)
int b[N],a[N],n,cnt;
void merge_sort(int a[],int l,int r)
{
if (r-l<1)
return ;
int mid=(l+r)>>1;
merge_sort(a,l,mid);
merge_sort(a,mid+1,r);
int i=l,j=mid+1;
fir(k,l,r)
if (j>r || i<=mid && a[i]<=a[j])
b[k]=a[i++];
else
cnt+=mid-i+1,b[k]=a[j++];//统筹不满足的情况
fir(k,l,r)
a[k]=b[k];
}
signed main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
merge_sort(a,1,n);
cout<<cnt;
return 0;
}