AcWing 788. 逆序对的数量

题目描述

给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满 i < j 且 a[i] > a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1≤n≤100000

输入样例:

6
2 3 4 5 6 1
输出样例:

5
解题报告

题意理解

这道题目就是让我们求解一个数组中的逆序对个数.

算法处理

求解逆序对问题,实际上有三种算法可以处理,分别是冒泡算法,归并排序,以及树状数组求解.

这里显然我们可以用性价比最高,代码最好写,效率特高的归并排序算法.

关于归并排序算法,各位看官可以点击这里哦

我们要注意一点,就是当我们发现填充第二个数组中的数,加入备用数组的使用,都要统计mid−i+1
,因为此时此刻,我们第一个数组中剩余的所有数,都会和它构成逆序对.

代码求解

#include <iostream>

using namespace std;

const int N = 1e6 + 10;

int a[N], tmp[N];

void merge_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int mid = l + r >> 1;

    merge_sort(q, l, mid), merge_sort(q, mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];
    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);

    merge_sort(a, 0, n - 1);

    for (int i = 0; i < n; i ++ ) printf("%d ", a[i]);

    return 0;
}

#include <bits/stdc++.h>
using namespace std;
const int N=100000  +100;
#define int long long
#define fir(i,a,b) for(int i=a;i<=b;i++)
int b[N],a[N],n,cnt;
void merge_sort(int a[],int l,int r)
{
    if (r-l<1)
        return ;
    int mid=(l+r)>>1;
    merge_sort(a,l,mid);
    merge_sort(a,mid+1,r);
    int i=l,j=mid+1;
    fir(k,l,r)
        if (j>r || i<=mid && a[i]<=a[j])
            b[k]=a[i++];
        else
            cnt+=mid-i+1,b[k]=a[j++];//统筹不满足的情况
    fir(k,l,r)
        a[k]=b[k];
}
signed main()
{
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>a[i];
    merge_sort(a,1,n);
    cout<<cnt;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭晋龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值