国内外常见的AI大模型汇总,你能找到的都在这

国内外常见的AI大模型汇总

1)国内

  • 讯飞星火大模型
  • 百度文心一言
  • 阿里通义千问
  • 华为盘古大模型
  • 清华·智谱清言
  • 复旦·大学MOSS
  • 商汤
  • 360智脑
  • 抖音(云雀大模型)
  • 中科院(紫东太初大模型)
  • 上海人工智能实验室(书生通用大模型)
  • 网易子曰大模型
  • 序列猴子开放平台
  • 孟子生成式大模型
  • 天工AI助手
  • ChatGLM申请内测
  • “商量SenseChat”
  • 百川大模型体验
  • MiniMax“abab模型”

2)国外

  • OpenAI chatgpt
  • 微软必应AI
  • Claude
  • Google Bad
  • Poe AI聊天
  • Clude2(PDF速读)
  • Character.AI
  • Neeva

综合能力,国外>国内

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### 海报设计中的大型模型与AI工具 在当前的技术背景下,利用大型语言模型(LLMs)和其他多模态技术可以显著提升海报设计的自动化水平和创意表现力。以下是关于如何使用大型模型以及相关AI工具来完成海报设计的具体介绍。 #### 基于多模态框架的智能版面设计 DocLap 是一种扩展自 mPLUG-Owl 的多模态框架,其核心组件包括 Llama-7b v1 作为语言模型、CLIP ViT-L/14 作为视觉编码器以及一个专门设计的视觉抽象器模块[^3]。该框架能够通过将图像特征转化为标准化标记并与文本嵌入对齐的方式,支持复杂的跨模态任务,例如自动布局生成和风格化设计。 对于海报设计而言,这种架构的优势在于它可以理解并综合多种类型的输入数据——既可以从给定的主题或文案中提取信息,也可以分析参考图片的内容特性从而推荐合适的配色方案、字体样式以及其他视觉元素的选择。 #### 技术实现的关键环节 为了使上述理论付诸实践,在开发过程中需重点关注以下几个方面: 1. **模型选型** 鉴于 DocLap 使用的是 Llama-7b v1 版本的语言模型,如果目标应用场景更加注重中文支持,则可能需要考虑替换为更适合处理本地化需求的国内预训练模型版本[^1]。此外,随着技术进步,后续迭代更新后的更强大变体也可能成为更好的选项。 2. **定制化微调** 对基础模型进行特定领域内的参数优化是非常必要的步骤之一。这通常涉及两个层面的工作:一方面是对新增加数值标记对应的向量表示重新学习;另一方面则是针对具体业务场景下的指令序列执行针对性强化训练。 3. **交互界面构建** 用户友好型的操作平台可以让非技术人员也轻松上手操作复杂算法驱动的功能集合。因此,除了后台逻辑搭建外,还需要精心构思前端展示形式及其背后关联机制的设计工作。 #### 推荐使用的在线资源和服务 当探索适用于实际项目的各类人工智能辅助创作工具有困难时,“AI Tool Hunt”网站提供了一个全面汇总优秀解决方案的地方[^2]。这里不仅罗列了许多专注于不同细分方向的产品列表,还附带详细的描述说明帮助访客快速找到契合自己期望的理想选择对象。 ```python from doclap import DocLapModel, LayoutGenerator model = DocLapModel(pretrained_model="mplug_owl", llm_version="llama_v1") generator = LayoutGenerator(model) theme_text = "科技未来" reference_image_path = "./example_poster.jpg" layout_result = generator.generate(theme=theme_text, reference_img=reference_image_path) print(layout_result) ``` 以上代码片段展示了如何加载预先配置好的 DocLap 模型实例,并调用其中的方法传入主题文字及参照图路径以获取最终输出结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值