在人工智能飞速发展的今天,AI 产品已经深入到我们生活和工作的方方面面。然而,面对诸如 “机器学习”“神经网络”“自然语言处理” 等众多专业术语,很多人可能会感到一头雾水。但其实,这些术语并不神秘,它们都与 AI 产品的功能和应用紧密相关。了解这些术语,能让我们更好地理解 AI 产品,从而更高效地使用它们。接下来,就让我们一同揭开这些核心术语的神秘面纱,通过简单易懂的解释和生动形象的场景对照,让你迅速掌握它们,在实际应用中发挥 AI 产品的最大价值。

一、基础概念
1. 人工智能(Artificial Intelligence, AI)
-
简单解释:人工智能是指通过计算机模拟人类智能的技术,使机器能够执行通常需要人类智能的任务,如学习、推理、感知和决策等。
-
场景对照:我们日常使用的语音助手,像苹果的 Siri、亚马逊的 Alexa 等,当我们对它们说话,提出诸如查询天气、设置提醒、播放音乐等各种要求时,它们能理解我们的语言,并依据指令完成相应操作,这就是人工智能在实际场景中的典型应用。这些语音助手背后,是复杂的人工智能技术在支撑,让机器实现了对人类语言的理解与任务执行。
2. 机器学习(Machine Learning, ML)
-
简单解释:机器学习是 AI 的一个子领域,它通过算法让计算机从数据中进行学习,而无需进行明确的编程。其核心在于数据驱动学习,借助数据对模型加以训练,模型自动识别数据中的模式,并据此进行预测。
-
场景对照:电商平台的商品推荐系统是机器学习的常见应用场景。平台收集用户的浏览历史、购买记录、停留时间等大量数据,通过机器学习算法对这些数据进行分析,挖掘用户的兴趣爱好和购买偏好。例如,当用户频繁浏览运动装备并购买过跑步鞋,推荐系统会基于对这些数据的学习,向用户推荐相关的运动服饰、健身器材等商品,为用户提供个性化的推荐服务。
3. 深度学习(Deep Learning, DL)
-
简单解释:深度学习属于机器学习的子领域,它基于多层非线性模型,比如神经网络,用于解决复杂的模式识别问题。其显著特点是具备层次结构和强大的自学习能力,能够处理大规模、高维度的数据。
-
场景对照:在安防监控领域,深度学习发挥着重要作用。利用深度学习技术的人脸识别系统,能够对监控视频中的海量人脸数据进行学习和分析。系统可以准确识别出每个人的面部特征,与数据库中的信息进行比对,实现人员身份的精准识别。无论是在机场、火车站等人员密集场所,还是在重要设施的安保监控中,深度学习驱动的人脸识别技术都极大地提高了安全性和管理效率。
4. 自然语言处理(Natural Language Processing, NLP)
-
简单解释:自然语言处理是 AI 的一个分支,主要聚焦于计算机对人类语言的理解和生成,涵盖文本分析、语音识别、语义解析、机器翻译等多个方面。
-
场景对照:如今的智能客服广泛应用了自然语言处理技术。当我们在网站或 APP 上咨询问题时,智能客服能够理解我们输入的文字内容,分析问题的语义,并给出相应的回答。例如,在网购过程中,我们询问商品的尺码、颜色、发货时间等问题,智能客服可以迅速理解我们的需求,从知识库中检索相关信息并准确回复,极大地提高了客户服务的效率和便捷性。
5. 计算机视觉(Computer Vision, CV)
-
简单解释:计算机视觉致力于让计算机从图像或视频中获取信息,并依据这些信息做出决策。它融合了图像处理、图像识别和理解等多种技术,使计算机能够从数字图像或视频里提取有价值的信息并进行判断。
-
场景对照:在自动驾驶领域,计算机视觉是关键技术之一。车辆配备的摄像头不断采集周围环境的图像信息,计算机视觉系统对这些图像进行分析,识别道路、行人、交通标志、其他车辆等各种目标物体。通过对图像中物体的位置、形状、运动状态等信息的准确理解,自动驾驶系统能够做出合理的驾驶决策,如加速、减速、转弯、避让等,保障车辆在道路上安全行驶。
二、模型与算法
1. 神经网络(Neural Network)
-
简单解释:神经网络由大量相互连接的神经元构成,它模拟人脑神经元的工作方式来处理信息,是深度学习的核心架构。众多神经元相互协作,通过对输入数据进行层层处理和变换,实现对复杂模式的学习和识别。
-
场景对照:在图像识别任务中,如识别照片中的动物种类,神经网络大显身手。以识别猫和狗的图片为例,输入的图片首先被转化为数字信号传递给神经网络。网络中的神经元按照特定的层次结构对图片中的像素信息进行处理,从简单的边缘检测,到更复杂的形状、纹理特征提取。通过大量猫和狗图片的训练,神经网络逐渐学习到猫和狗各自独特的特征模式。当一张新的图片输入时,它能够依据学习到的特征模式,判断图片中的动物是猫还是狗。
2. 决策树(Decision Tree)
-
简单解释:决策树是一种以树状结构进行决策和分类的模型。在这个模型中,每个内部节点代表一个特征上的测试,分支是测试的输出结果,而每个叶节点则对应一个类别或值。决策树的结构直观,易于理解和解释,能够处理数据中的非线性关系,常用于分类和回归任务。
-
场景对照:在医疗诊断中,决策树可用于辅助医生判断患者是否患有某种疾病。例如,对于判断患者是否患有糖尿病,医生会综合考虑多个因素,如患者的年龄、体重、血糖值、家族病史等。这些因素就如同决策树的内部节点。假设以血糖值作为第一个测试节点,如果患者的空腹血糖值大于某个设定的阈值,进入一个分支;若小于该阈值,则进入另一个分支。在后续的分支中,可能继续根据其他因素如体重指数(BMI)等进行进一步测试。通过这样层层递进的决策过程,最终得出患者是否患有糖尿病的诊断结论,这与决策树从根节点到叶节点的决策过程相似。
3. 支持向量机(Support Vector Machine, SVM)
-
简单解释:支持向量机是一种强大的非线性学习算法,它的主要任务是在高维空间中寻找一个最大间隔超平面,以此来实现对数据的分类和回归。通过巧妙运用核技巧,SVM 能够有效地处理高维数据,在特征空间中找到一个最优的分隔超平面,将不同类别的数据尽可能清晰地分开。这种方法在数据维度高于样本数量的分类和回归任务中表现出色。
-
场景对照:在手写数字识别场景中,支持向量机有广泛应用。每个手写数字图像可以看作是高维空间中的一个数据点。SVM 的目标是在这个高维空间中找到一个超平面,能够将代表不同数字的点准确地划分开来。例如,对于数字 “0” 和数字 “1” 的识别,SVM 通过分析大量手写 “0” 和 “1” 的样本图像,找到一个最合适的超平面,使得在这个超平面两侧,分别是清晰可分的 “0” 类和 “1” 类数据点。即使遇到新的手写数字图像,SVM 也能依据这个超平面来判断它属于哪个数字类别。
4. 生成对抗网络(Generative Adversarial Network, GAN)
-
简单解释:生成对抗网络由生成器和判别器这两个相互对抗的神经网络组成。生成器的任务是生成数据,而判别器则负责判断生成的数据是否真实。在训练过程中,生成器不断努力生成更逼真的数据,以欺骗判别器;判别器则持续提升自己的识别能力,试图识破生成器的 “造假”。两者通过这种不断对抗的方式,共同进化,最终生成器能够生成非常逼真的数据。
-
场景对照:在艺术创作领域,GAN 可用于生成虚拟画作。生成器学习大量真实画作的风格、色彩、笔触等特征后,尝试生成新的画作。判别器则对生成的画作和真实画作进行区分。例如,生成器生成一幅类似梵高风格的油画,判别器会分析这幅画的各个方面,判断它是否具有梵高画作的典型特征,是真实的梵高作品还是生成器伪造的。在这个过程中,生成器不断改进,使得生成的画作越来越接近真实的梵高风格,甚至达到以假乱真的程度。
三、数据相关
1. 数据标注(Data Labeling)
-
简单解释:数据标注指的是为原始数据添加标签或注释,从而使这些数据能够作为监督学习中的训练数据。在监督学习中,模型需要依靠标记好的数据来学习输入与输出之间的对应关系,因此高质量的数据标注对于模型的性能起着至关重要的作用。
-
场景对照:在图像分类任务中,数据标注必不可少。比如建立一个识别水果种类的图像分类模型,就需要对大量水果图像进行标注。标注人员要仔细查看每一张水果图片,然后为其标注上对应的水果类别,如苹果、香蕉、橙子等。这些带有准确标注的图像数据被用于训练模型,模型通过学习这些标注数据,逐渐掌握不同水果的特征,从而能够对新的未标注水果图像进行准确分类。
2. 特征工程(Feature Engineering)
-
简单解释:特征工程是从原始数据中提取、选择和转换特征的一系列操作,其目的是提升机器学习模型的性能。在这个过程中,常见的技术包括特征选择,即挑选出对模型预测最有价值的特征;特征缩放,对特征进行标准化处理,使其在统一的尺度上;以及特征生成,创造新的特征来更好地描述数据。通过有效的特征工程,能够提取出对模型预测最为有用的信息,从而提高模型的准确性和效率。
-
场景对照:在金融风控领域,特征工程应用广泛。例如在评估用户的信用风险时,需要从大量的用户数据中提取关键特征。原始数据可能包含用户的年龄、收入、消费习惯、信用记录等诸多信息。通过特征工程,首先进行特征选择,筛选出与信用风险相关性较高的特征,如收入稳定性、过往逾期记录等。然后对这些特征进行缩放,将不同量级的特征数据转化到相同的尺度范围,便于模型处理。同时,还可能通过特征生成,比如计算用户的债务收入比等新的特征。经过这样的特征工程处理,能够为信用风险评估模型提供更优质的数据特征,使模型更准确地评估用户的信用风险。
3. 训练数据(Training Data)
-
简单解释:训练数据是用于训练机器学习模型的数据集,它包含了输入特征以及对应的目标输出。训练数据就如同模型学习的 “教材”,模型通过对这些数据的学习,不断调整自身的参数,从而掌握数据中的模式和规律,实现对未知数据的预测和判断。训练数据的质量和规模直接影响着模型的性能表现。
-
场景对照:以预测股票价格走势的模型为例,训练数据至关重要。模型的输入特征可能包括股票的历史价格、成交量、公司财务报表数据、行业趋势等。而目标输出则是股票价格在未来某个时间段的涨跌情况。通过大量历史股票数据的训练,模型学习这些输入特征与股票价格涨跌之间的关系。例如,模型可能发现当某只股票的成交量连续多日放大,同时公司公布的季度财报显示业绩良好时,股票价格在未来一周上涨的概率较大。这些从训练数据中学到的规律,将帮助模型对未来的股票价格走势进行预测。
四、其他重要术语
1. 迁移学习(Transfer Learning)
-
简单解释:迁移学习是指将在一个任务上学习到的知识应用到另一个相关任务中。通过迁移学习,可以利用已有的预训练模型,快速适应新的任务,减少在新任务上的训练时间和数据需求,尤其在新任务数据稀缺的情况下,迁移学习的优势更加明显。
-
场景对照:在图像识别领域,假设已经有一个在大规模通用图像数据集上训练好的图像分类模型,它能够准确识别各种常见物体。现在要建立一个专门识别花卉种类的模型,如果从头开始训练,需要大量的花卉图像数据以及较长的训练时间。而利用迁移学习,我们可以将已有的通用图像分类模型的部分参数进行微调,应用到花卉识别任务中。由于通用模型已经学习到了很多图像的基本特征,如边缘、形状、纹理等,在花卉识别任务中,只需针对花卉特有的特征对模型进行少量调整,就能快速建立起一个性能不错的花卉识别模型,大大节省了训练成本和时间。
2. 强化学习(Reinforcement Learning, RL)
-
简单解释:强化学习是一种让智能体在环境中通过执行动作,根据获得的奖励反馈来学习最优策略,以最大化累积奖励的学习范式。智能体在环境中不断尝试不同的动作,环境会根据智能体的动作给出相应的奖励或惩罚信号,智能体通过学习这些反馈信号,逐渐调整自己的行为策略,以达到获得最大奖励的目的。
-
场景对照:机器人的路径规划是强化学习的典型应用场景。假设有一个机器人要在一个复杂的室内环境中从起点移动到目标点。机器人就是智能体,它在环境中可以执行前进、后退、左转、右转等动作。环境则根据机器人的动作给出反馈,如果机器人朝着目标点靠近,就给予正奖励;如果撞到障碍物或者远离目标点,则给予负奖励。机器人在不断探索不同动作序列的过程中,通过强化学习算法,逐渐学习到从起点到目标点的最优路径策略,即如何以最快、最安全的方式到达目标点,以获得最大的累积奖励。
3. 小样本学习(Few-Shot Learning)
-
简单解释:小样本学习旨在让模型在极少量标注数据的情况下进行学习并完成任务。与传统的机器学习需要大量训练数据不同,小样本学习通过利用模型的先验知识、元学习等方法,使模型能够从少量示例中快速学习到新任务的特征和模式,从而具备对新数据的预测和分类能力。
-
场景对照:在珍稀物种识别中,由于珍稀物种数量稀少,很难获取大量的图像数据用于训练模型。小样本学习技术就可以发挥重要作用。例如,只有少量几种珍稀鸟类的少量图片作为标注数据,利用小样本学习算法,模型可以从这些有限的数据中学习到珍稀鸟类的独特特征,如羽毛颜色、形状、嘴型等。当遇到新的该珍稀鸟类的图片时,模型能够依据从少量样本中学到的特征,准确识别出这是属于哪种珍稀鸟类,而无需大量的同类图片数据进行训练。
4. 多模态(Multimodal)
-
简单解释:多模态是指整合文本、图像、音频、视频等多种不同类型数据模态的技术。通过跨模态对齐和融合,多模态技术能够提升模型对复杂信息的理解和处理能力,使模型能够综合利用多种信息源,更全面、准确地完成任务。
-
场景对照:在智能安防监控系统中,多模态技术得到了很好的应用。系统不仅可以通过摄像头采集监控区域的视频图像信息,还可以通过麦克风采集音频信息。当检测到异常情况时,多模态系统能够同时分析视频中的人物行为、动作以及音频中的声音特征。例如,在发生打斗事件时,视频图像中可以看到人员的肢体冲突动作,音频中能听到争吵、呼喊声。多模态系统将这些不同模态的数据进行融合分析,能够更准确、快速地判断出异常事件的发生,并及时发出警报,相比单一模态的数据处理,大大提高了安防监控的准确性和可靠性。
通过对这些 AI 产品核心术语的简单解释与场景对照,相信你已经对它们有了更清晰的认识。在实际应用中,无论是选择合适的 AI 产品,还是理解其工作原理,这些知识都将大有裨益。随着 AI 技术的不断发展,持续学习和掌握这些术语,能让我们更好地跟上时代的步伐,充分利用 AI 带来的便利与创新。
五、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】


第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】


1666

被折叠的 条评论
为什么被折叠?



