【强烈收藏】大语言模型、智能体与工作流:零基础入门大模型开发完全指南

本文解析了大语言模型(LLM)、智能体(Agent)和工作流(Workflow)三大AI核心技术。LLM作为"认知引擎"提供基础能力;Agent作为"自主行动者"运用LLM能力执行任务;Workflow作为"流程编排器"组织Agent和LLM实现复杂业务目标。三者形成从"能力"到"行动"再到"规模化应用"的技术栈,未来将向专业化、智能化和深度融合方向发展。

1、 核心概念解析

A. 大语言模型(Large Language Model, LLM)

大语言模型是本轮AI浪潮的基石,可以被视为一个强大的“认知引擎”。

  • 定义:LLM是一种基于海量文本数据训练的深度学习模型,其核心架构通常是Transformer网络。通过“预训练+精调”的范式,模型学习到语言规则、世界知识乃至一定的推理能力,能够根据输入的提示(Prompt)生成连贯、相关的文本内容 。

  • 核心特点
  • 涌现能力(Emergent Abilities):当模型规模突破某个阈值后,会表现出未被直接训练但却令人惊艳的能力,如上下文学习、零样本/少样本学习、思维链推理等。
  • 通用性:单一模型即可通过不同的提示词应用于翻译、摘要、问答、代码生成等多种任务,展现出极强的通用性。
  • 知识密集型:模型参数中编码了海量的世界知识,使其成为一个庞大的“知识库”。

  • 技术架构:以Transformer为核心,利用自注意力机制(Self-Attention)捕捉文本中的长距离依赖关系。其本质是一个概率预测模型,计算给定上下文中下一个词元(Token)出现的概率。

B. 智能体(AI Agent)

如果说LLM是“大脑”,那么智能体就是拥有这个大脑并能自主行动的“个体”。

  • 定义:AI Agent是一个具备自主性的计算实体,它能感知环境、设定目标、进行规划、记忆、并调用工具来执行任务以达成目标。LLM通常作为Agent的核心“大脑”或“决策中枢”。

  • 核心特点
  • 自主性(Autonomy):Agent能够在没有人为干预的情况下,根据目标自主决定并执行一系列动作。
  • 目标导向(Goal-oriented):所有行动都围绕一个或多个预设目标展开。
  • 环境交互与工具使用(Interaction & Tool Use):Agent能够通过API等方式与外部环境(如数据库、网站、其他软件)交互,极大地扩展了其能力边界。

  • 技术架构:典型的Agent架构包含四大模块:
  1. 感知模块(Perception):收集环境信息。
  2. 规划模块(Planning):将复杂目标分解为可执行的子任务序列。LLM在此扮演关键角色,例如使用“思维链”(Chain of Thought)进行规划。
  3. 记忆模块(Memory):存储短期交互历史和长期经验知识,为决策提供依据。
  4. 行动模块(Action):调用工具(Tools)执行具体操作,如代码执行器、搜索引擎API等。ReAct(Reason+Act)框架是实现这一模式的经典范例。

C. 工作流(Workflow)

工作流是实现复杂业务流程自动化的“蓝图”或“编排系统”。

  • 定义:工作流是一系列预先定义好的、相互关联的任务或活动的结构化序列,旨在高效、可靠地完成某个特定的业务目标。在AI时代,工作流可以融合LLM、Agent以及其他传统或AI工具。

  • 核心特点
  • 结构化与可预测性:工作流通常遵循一个明确的路径或规则(尽管某些路径可能包含条件分支),重点在于流程的稳定、可靠和可重复性。
  • 编排与协同:核心价值在于对多个组件(人、软件、AI模型、Agent等)进行有效的组织和调度,确保它们协同工作。
  • 业务导向:工作流直接服务于具体的业务场景,如客户关系管理、供应链自动化、财务审批等 。

  • 技术架构:传统上由业务流程管理(BPM)或机器人流程自动化(RPA)系统实现。现代AI工作流则通过平台(如LangChain, LlamaIndex)将LLM调用、Agent触发、数据处理、人工审批等环节串联成一个完整的执行链。

2、多维度对比分析

为了更清晰地展示三者的区别,我们从以下几个维度进行对比:

维度大语言模型 (LLM)智能体 (Agent)工作流 (Workflow)
核心定位认知引擎、知识源泉自主行动者、任务执行单元流程编排器、系统协调者
决策方式被动响应,基于提示生成内容主动决策,根据目标和环境进行规划和行动规则驱动,遵循预定义的逻辑和路径
灵活性高(能应对无穷变化的用户输入)较高(能动态调整计划以适应环境变化)较低(为保证可靠性,流程相对固定)
自主性无(需要人类提供指令)高(可在无人干预下完成复杂任务)低(执行预设脚本,自主性体现在子任务中)
应用场景内容生成、问答、翻译、代码辅助个人助理、自动化研究、复杂问题解决、游戏AI企业流程自动化(EPR)、客户支持、数据处理管道
技术实现Transformer网络、大规模预训练LLM+规划+记忆+工具调用(如ReAct框架)BPM/RPA系统、流程编排引擎、有向无环图(DAG)

3、关系与协同

LLM、Agent和Workflow并非相互独立,而是构成了一个能力递进、相互协作的生态系统。

  1. LLM是基础:LLM为Agent提供了思考和推理的核心能力,也为Workflow中的特定任务(如邮件撰写、信息摘要)提供了强大的AI功能。没有LLM,现代Agent和AI Workflow将无从谈起。
  2. Agent是LLM的应用化和自主化:Agent将LLM从一个被动的文本生成器,转变为一个能够主动与世界交互并完成任务的行动者。它赋予了LLM“手”和“脚”(通过工具)。
  3. Workflow是Agent和LLM的组织和规模化:单个Agent可能可以完成一个复杂任务,但要实现一个涉及多角色、多阶段、强合规性的企业级业务流程,就需要Workflow来进行编排 7。Workflow可以视作一个管理多个Agent、LLM调用以及人工节点的“超级Agent”或“组织系统”。

协同示例:一个自动化的客户投诉处理流程(Workflow)

  1. 步骤1(Workflow触发):系统接收到一封投诉邮件。
  2. 步骤2(LLM执行):Workflow调用LLM,对邮件内容进行摘要、情感分析和意图识别。
  3. 步骤3(LLM分发): Workflow根据LLM分析结果中的“投诉类型”字段,执行路由逻辑。例如,若类型为“技术问题”,则触发“技术支持Agent”进行处理。
  4. 步骤4(Agent行动):该Agent接收到任务(解决技术问题),自主规划并执行:调用数据库API查询客户信息,访问知识库查找解决方案,最终生成一份解决方案并回复给客户。
  5. 步骤5(Workflow闭环):Agent完成后,将结果反馈给Workflow,Workflow更新CRM系统中的工单状态,流程结束。

4、总结与未来趋势

总结而言,大语言模型(LLM)是提供认知能力的“引擎”,智能体(Agent)是运用该引擎自主行动的“个体”,而工作流(Workflow)则是编排这些个体与工具以实现复杂业务目标的“组织”。三者共同构成了从“能力”到“行动”再到“规模化应用”的技术栈。

未来,我们可以预见以下发展趋势:

  • Agent的专业化与协同:将会出现更多专注于特定领域(如金融分析、软件测试)的Agent,并且多个Agent之间将能够进行交流与协作,形成“Agent社会”。
  • Workflow的智能化与自适应:工作流将不再是完全固定的,而是能基于实时数据和AI分析,动态地调整和优化流程路径,变得更加智能和有弹性。
  • 三者深度融合(Hyperautomation):LLM、Agent和Workflow的界限将进一步模糊,深度集成到企业的核心业务系统中,最终实现更高层次的自动化,即“超级自动化”,将人类从重复性劳动中解放出来,专注于更具创造性的工作。

限时免费!CSDN 大模型学习大礼包开放领取!

从入门到进阶,助你快速掌握核心技能!

资料目录

  1. AI大模型学习路线图
  2. 配套视频教程
  3. 大模型学习书籍
  4. AI大模型最新行业报告
  5. 大模型项目实战
  6. 面试题合集

👇👇扫码免费领取全部内容👇👇

在这里插入图片描述

📚 资源包核心内容一览:

1、 AI大模型学习路线图

  1. 成长路线图 & 学习规划: 科学系统的新手入门指南,避免走弯路,明确学习方向。

img

2、配套视频教程

  1. 根据学习路线配套的视频教程:涵盖核心知识板块,告别晦涩文字,快速理解重点难点。

在这里插入图片描述

课程精彩瞬间

在这里插入图片描述

3、大模型学习书籍

在这里插入图片描述

4、 AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

img

5、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

img

6、大模型大厂面试真题

整理了百度、阿里、字节等企业近三年的AI大模型岗位面试题,涵盖基础理论、技术实操、项目经验等维度,每道题都配有详细解析和答题思路,帮你针对性提升面试竞争力。

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值