给定一个 n×mn×m 的二维整数数组,用来表示一个迷宫,数组中只包含 00 或 11,其中 00 表示可以走的路,11 表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1)(1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角 (n,m)(n,m) 处,至少需要移动多少次。
数据保证 (1,1)(1,1) 处和 (n,m)(n,m) 处的数字为 00,且一定至少存在一条通路。
输入格式
第一行包含两个整数 nn 和 mm。
接下来 nn 行,每行包含 mm 个整数(00 或 11),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤1001≤n,m≤100
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
//代码
#include <bits/stdc++.h>
#include <queue>
const int N = 121;
int a[N][N];
int b[N][N];
int dis[2][4]={{-1,0,0,1},{0,1,-1,0}};
int n,m;
struct bro
{
int x,y;
};
using namespace std;
int bfs()
{
queue<bro> q;
memset(b, -1, sizeof b);
b[0][0] = 0;
bro key;
key.x=0;
key.y=0;
q.push(key);
while (q.size())
{
auto t = q.front();
q.pop();
for (int i = 0; i < 4; i ++ )
{
int x = t.x + dis[0][i], y = t.y + dis[1][i];
if (x >= 0 && x < n && y >= 0 && y < m && a[x][y] == 0 && b[x][y] == -1)
{
b[x][y] = b[t.x][t.y] + 1;
bro brother;
brother.x=x;
brother.y=y;
q.push(brother);
}
}
}
return b[n - 1][m - 1];
}
int main()
{
cin>>n>>m;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin>>a[i][j];
cout<<bfs();
}