【应用多元统计分析】——第三章(1)

应用多元统计分析(2022春)

3.1

x ∼ N p ( μ , Σ ) , rank ⁡ ( Σ ) = r , u ∼ N r ( 0 , I ) \boldsymbol{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \operatorname{rank}(\boldsymbol{\Sigma})=r, \boldsymbol{u} \sim N_{r}(\boldsymbol{0}, \boldsymbol{I}) xNp(μ,Σ),rank(Σ)=r,uNr(0,I), 试证存在秩为 r r r p × r p \times r p×r 矩阵 A \boldsymbol{A} A, 使得 x \boldsymbol{x} x μ + A u \boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{u} μ+Au 服从相同的分布。

答案

§ 1.7 \S 1.7 §1.7 的性质 (8) 知, 存在秩为 r r r p × r p \times r p×r 矩阵 A \boldsymbol{A} A, 使得 Σ = A A ′ \boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\prime} Σ=AA 。由于 u ∼ N r ( 0 , I ) \boldsymbol{u} \sim N_{r}(\mathbf{0}, \boldsymbol{I}) uNr(0,I), 故 μ + A u ∼ \boldsymbol{\mu}+\boldsymbol{A u \sim} μ+Au N p ( μ , A A ′ ) N_{p}\left(\boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{A}^{\prime}\right) Np(μ,AA), 从而 μ + A u \boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{u} μ+Au x \boldsymbol{x} x 服从相同的分布 N p ( μ , Σ ) N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) Np(μ,Σ)

3.2

x ∼ N 3 ( μ , Σ ) \boldsymbol{x} \sim N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xN3(μ,Σ), 其中
Σ = ( 4 − 2 − 2 − 2 2 0 − 2 0 2 ) \boldsymbol{\Sigma}=\left(\begin{array}{rrr} 4 & -2 & -2 \\ -2 & 2 & 0 \\ -2 & 0 & 2 \end{array}\right) Σ= 422220202
试求习题 3. 1中的 A \boldsymbol{A} A

答案

Σ \Sigma Σ 的特征值分别为 6 , 2 , 0 6,2,0 6,2,0, 前两个正特征值相应的单位特征向量分别为 ( 2 / 6 , − 1 / 6 , − 1 / 6 ) ′ (2 / \sqrt{6},-1 / \sqrt{6},-1 / \sqrt{6})^{\prime} (2/6 ,1/6 ,1/6 ) ( 0 , 1 / 2 , − 1 / 2 ) ′ (0,1 / \sqrt{2},-1 / \sqrt{2})^{\prime} (0,1/2 ,1/2 ), 由 § 1.7 \S 1.7 §1.7 性质 (8) 的证明过程知,
A = ( 6 ( 2 / 6 − 1 / 6 − 1 / 6 ) , 2 ( 0 1 / 2 − 1 / 2 ) ) = ( 2 0 − 1 1 − 1 − 1 ) \boldsymbol{A}=\left( \sqrt{6}\left(\begin{array}{r} 2 / \sqrt{6} \\ -1 / \sqrt{6} \\ -1 / \sqrt{6} \end{array}\right), \sqrt{2}\left(\begin{array}{c} 0 \\ 1 / \sqrt{2} \\ -1 / \sqrt{2} \end{array}\right)\right) =\left(\begin{array}{rr} 2 & 0 \\ -1 & 1 \\ -1 & -1 \end{array}\right) A= 6 2/6 1/6 1/6 ,2 01/2 1/2 = 211011

text = "
4 -2 -2
-2 2 0
-2 0 2
"
Sigma = data.matrix(read.table(text=text, fill=TRUE))
colnames(Sigma) = NULL
Sigma
Lambda = eigen(Sigma)$values
Lambda
## [1] 6.000000e+00 2.000000e+00 3.552714e-15
T = eigen(Sigma)$vectors
r = qr(Sigma)$rank
r
## [1] 2
Lambda1 = diag(Lambda[1:r])
T1 = T[,1:r]
A = T1 %*% sqrt(Lambda1 )
A
##      [,1] [,2]
## [1,]    2    0
## [2,]   -1   -1
## [3,]   -1    1

3.3

x ∼ N 3 ( μ , Σ ) , A = ( 1 2 − 1 1 2 − 1 2 0 − 1 2 ) \boldsymbol{x} \sim N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{A}=\left(\begin{array}{rrr}\frac{1}{2} & -1 & \frac{1}{2} \\ -\frac{1}{2} & 0 & -\frac{1}{2}\end{array}\right) xN3(μ,Σ),A=(2121102121), 其中 μ = ( 1 , 2 , − 1 ) ′ , Σ = ( 2 1 1 1 2 − 1 1 − 1 4 ) \boldsymbol{\mu}=(1,2,-1)^{\prime}, \boldsymbol{\Sigma}=\left(\begin{array}{rrr}2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 4\end{array}\right) μ=(1,2,1),Σ= 211121114 , 试求 y = A x \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} y=Ax 的分布。

答案

计算得

E ( y ) = A μ = ( − 2 0 ) , V ( y ) = A Σ A ′ = ( 4 − 2 − 2 2 ) E(\boldsymbol{y})=\boldsymbol{A} \boldsymbol{\mu}=\left(\begin{array}{r}-2 \\ 0\end{array}\right), \quad V(\boldsymbol{y})=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\prime}=\left(\begin{array}{rr}4 & -2 \\ -2 & 2\end{array}\right) E(y)=Aμ=(20),V(y)=AΣA=(4222)
所以 y \boldsymbol{y} y 服从 N 2 ( ( − 2 0 ) , ( 4 − 2 − 2 2 ) ) N_{2}\left(\left(\begin{array}{r}-2 \\ 0\end{array}\right),\left(\begin{array}{rr}4 & -2 \\ -2 & 2\end{array}\right)\right) N2((20),(4222))

A = matrix(c(1/2,-1/2,-1,0,1/2,-1/2),2,3)
mu = c(1,2,-1)
Sigma = matrix(c(2,1,1,1,2,-1,1,-1,4),3,3)
Ey = A %*% mu
Ey
##      [,1]
## [1,]   -2
## [2,]    0
Vy = A %*% Sigma %*% t(A)
Vy
##      [,1] [,2]
## [1,]    4   -2
## [2,]   -2    2

3.4

x ∼ N 3 ( μ , Σ ) \boldsymbol{x} \sim N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xN3(μ,Σ), 其中
μ = ( 3 1 4 ) , Σ = ( 6 1 − 2 1 13 4 − 2 4 4 ) \boldsymbol{\mu}=\left(\begin{array}{l} 3 \\ 1 \\ 4 \end{array}\right), \quad \boldsymbol{\Sigma}=\left(\begin{array}{rrr} 6 & 1 & -2 \\ 1 & 13 & 4 \\ -2 & 4 & 4 \end{array}\right) μ= 314 ,Σ= 6121134244
试求
(1) y 1 = x 1 + x 2 − 2 x 3 y_{1}=x_{1}+x_{2}-2 x_{3} y1=x1+x22x3 y 2 = 3 x 1 − x 2 + 2 x 3 y_{2}=3 x_{1}-x_{2}+2 x_{3} y2=3x1x2+2x3 的联合分布;
(2) x 1 x_{1} x1 x 3 x_{3} x3 的联合分布;
(3) x 1 , x 3 x_{1}, x_{3} x1,x3 1 2 ( x 1 + x 2 ) \frac{1}{2}\left(x_{1}+x_{2}\right) 21(x1+x2) 的联合分布。

答案

(1)

计算得

( y 1 y 2 ) = ( 1 1 − 2 3 − 1 2 ) ( x 1 x 2 x 3 ) ∼ N 2 ( ( − 4 16 ) , ( 29 15 15 37 ) ) \left(\begin{array}{l}y_{1} \\ y_{2}\end{array}\right) =\left(\begin{array}{rrr} 1 & 1 & -2 \\ 3 & -1 & 2\end{array}\right) \left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \sim N_{2}\left(\left(\begin{array}{r}-4 \\ 16\end{array}\right), \quad \left(\begin{array}{ll} 29 & 15 \\ 15 & 37\end{array}\right)\right) (y1y2)=(131122) x1x2x3 N2((416),(29151537))

A = matrix(c(1,3,1,-1,-2,2),2,3)
mu = c(3,1,4)
Sigma = matrix(c(6, 1, -2, 1, 13, 4, -2, 4, 4), nrow=3)
Ey = A %*% mu; Ey
##      [,1]
## [1,]   -4
## [2,]   16
Vy = A %*% Sigma %*% t(A); Vy
##      [,1] [,2]
## [1,]   29   15
## [2,]   15   37

(2)

注意到
( x 1 x 3 ) = ( 1 0 0 0 0 1 ) ( x 1 x 2 x 3 ) = def B x \left(\begin{array}{l}x_{1} \\ x_{3}\end{array}\right) =\left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \overset{\text{def}}=B \boldsymbol{x} (x1x3)=(100001) x1x2x3 =defBx
仿照(1)计算可得
N 2 ( ( 3 4 ) , ( 6 − 2 − 2 4 ) ) ; N_{2}\left(\left(\begin{array}{l}3 \\ 4\end{array}\right),\left(\begin{array}{rr}6 & -2 \\ -2 & 4\end{array}\right)\right) ; N2((34),(6224));

B = matrix(c(1,0,0,0,0,1),2,3)
mu = c(3,1,4)
Sigma = matrix(c(6, 1, -2, 1, 13, 4, -2, 4, 4), nrow=3)
Ey = B %*% mu; Ey
##      [,1]
## [1,]    3
## [2,]    4
Vy = B %*% Sigma %*% t(B); Vy
##      [,1] [,2]
## [1,]    6   -2
## [2,]   -2    4

(3)

( x 1 x 3 1 2 ( x 1 + x 2 ) ) = ( 1 0 0 0 0 1 1 2 1 2 0 ) ( x 1 x 2 x 3 ) ∼ N 3 ( ( 3 4 2 ) , ( 6 − 2 3 1 2 − 2 4 1 3 1 2 1 5 1 4 ) ) \left(\begin{array}{c} x_{1} \\ x_{3} \\ \frac{1}{2}\left(x_{1}+x_{2}\right)\end{array}\right) =\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0\end{array}\right) \left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \sim N_{3} \left(\left(\begin{array}{l} 3 \\ 4 \\ 2\end{array}\right), \left(\begin{array}{ccc} 6 & -2 & 3\frac{1}{2} \\ -2 & 4 & 1 \\ 3\frac{1}{2} & 1 & 5\frac{1}{4} \end{array}\right)\right) x1x321(x1+x2) = 10210021010 x1x2x3 N3 342 , 623212413211541

C = matrix(c(1,0,1/2,0,0,1/2,0,1,0),3)
mu = c(3,1,4)
Sigma = matrix(c(6, 1, -2, 1, 13, 4, -2, 4, 4), nrow=3)
Ey = C %*% mu; Ey
##      [,1]
## [1,]    3
## [2,]    4
## [3,]    2
Vy = C %*% Sigma %*% t(C); Vy
##      [,1] [,2] [,3]
## [1,]  6.0   -2 3.50
## [2,] -2.0    4 1.00
## [3,]  3.5    1 5.25

3.5

x ∼ N p ( μ , Σ ) \boldsymbol{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xNp(μ,Σ), 其中 x = ( x 1 , x 2 , ⋯   , x p ) ′ , μ = ( μ 1 , μ 2 , ⋯   , μ p ) ′ , Σ = diag ⁡ ( σ 1 2 , σ 2 2 , ⋯   , σ p 2 ) \boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{p}\right)^{\prime}, \boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{p}\right)^{\prime}, \boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{p}^{2}\right) x=(x1,x2,,xp),μ=(μ1,μ2,,μp),Σ=diag(σ12,σ22,,σp2), 试证 x 1 x_{1} x1, x 2 , ⋯   , x p x_{2}, \cdots, x_{p} x2,,xp 相互独立。

答案

x ∼ N p ( μ , Σ ) \boldsymbol{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xNp(μ,Σ) 可知, x i ∼ N ( μ i , σ i 2 ) x_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right) xiN(μi,σi2) 。由于
f ( x ) = ( 2 π ) − p / 2 ∣ Σ ∣ − 1 / 2 exp ⁡ [ − 1 2 ( x − μ ) ′ Σ − 1 ( x − μ ) ] = ( 2 π ) − p / 2 ( σ 1 σ 2 ⋯ σ p ) − 1 exp ⁡ [ − 1 2 ∑ i = 1 p ( x i − μ i σ i ) 2 ] = ∏ i = 1 p 1 2 π σ i e ( x i − μ i ) 2 2 σ i 2 = ∏ i = 1 p f i ( x i ) \begin{aligned} f(\boldsymbol{x})&=(2 \pi)^{-p / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right] \\ &=(2 \pi)^{-p / 2}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{p}\right)^{-1} \exp \left[-\frac{1}{2} \sum_{i=1}^{p}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}\right] \\ &=\prod_{i=1}^{p} \frac{1}{\sqrt{2 \pi} \sigma_{i}} \mathrm{e}^{\frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}}=\prod_{i=1}^{p} f_{i}\left(x_{i}\right) \end{aligned} f(x)=(2π)p/2Σ1/2exp[21(xμ)Σ1(xμ)]=(2π)p/2(σ1σ2σp)1exp[21i=1p(σixiμi)2]=i=1p2π σi1e2σi2(xiμi)2=i=1pfi(xi)

联合密度等于边缘密度乘积, 故 x 1 , x 2 , ⋯   , x p x_{1}, x_{2}, \cdots, x_{p} x1,x2,,xp 相互独立。

3.6(有用结论)

试证独立正态变量的联合分布必然是多元正态的。

答案

x i ∼ N ( μ i , σ i 2 ) x_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right) xiN(μi,σi2), 且 x 1 , x 2 , ⋯   , x p x_{1}, x_{2}, \cdots, x_{p} x1,x2,,xp 相互独立, 则
f ( x 1 , x 2 , ⋯   , x p ) = ∏ i = 1 p f i ( x i ) = ( 2 π ) − p / 2 ( σ 1 σ 2 ⋯ σ p ) − 1 exp ⁡ [ − 1 2 ∑ i = 1 p ( x i − μ i σ i ) 2 ] = ( 2 π ) − p / 2 ∣ Σ ∣ − 1 / 2 exp ⁡ [ − 1 2 ( x − μ ) ′ Σ − 1 ( x − μ ) ] \begin{aligned} f\left(x_{1}, x_{2}, \cdots, x_{p}\right) &=\prod_{i=1}^{p} f_{i}\left(x_{i}\right)=(2 \pi)^{-p / 2}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{p}\right)^{-1} \exp \left[-\frac{1}{2} \sum_{i=1}^{p}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}\right] \\ &=(2 \pi)^{-p / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right] \end{aligned} f(x1,x2,,xp)=i=1pfi(xi)=(2π)p/2(σ1σ2σp)1exp[21i=1p(σixiμi)2]=(2π)p/2Σ1/2exp[21(xμ)Σ1(xμ)]
其中 Σ = diag ⁡ ( σ 1 2 , σ 2 2 , ⋯   , σ p 2 ) > 0 \boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{p}^{2}\right)>0 Σ=diag(σ12,σ22,,σp2)>0, 所以 x 1 , x 2 , ⋯   , x p x_{1}, x_{2}, \cdots, x_{p} x1,x2,,xp 的联合分布是多元正态的。

3.7

x ∼ N 4 ( μ , Σ ) \boldsymbol{x} \sim N_{4}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xN4(μ,Σ), 其中
μ = ( − 4 2 5 − 1 ) , Σ = ( 8 0 − 1 0 0 3 0 2 − 1 0 5 0 0 2 0 7 ) \boldsymbol{\mu}=\left(\begin{array}{r} -4 \\ 2 \\ 5 \\ -1\end{array}\right), \quad \boldsymbol{\Sigma}=\left(\begin{array}{rrrr} 8 & 0 & -1 & 0 \\ 0 & 3 & 0 & 2 \\ -1 & 0 & 5 & 0 \\ 0 & 2 & 0 & 7 \end{array}\right) μ= 4251 ,Σ= 8010030210500207
以下哪些随机变量对是独立的? 为什么?
(1) x 1 x_{1} x1 x 2 x_{2} x2; (2) x 1 x_{1} x1 x 3 x_{3} x3; (3) x 2 x_{2} x2 x 3 x_{3} x3; (4) x 3 x_{3} x3 x 4 x_{4} x4; (5) ( x 1 , x 2 ) \left(x_{1}, x_{2}\right) (x1,x2) x 3 x_{3} x3; (6) ( x 1 , x 3 ) \left(x_{1}, x_{3}\right) (x1,x3) x 4 ; x_{4} ; x4; (7) x 1 x_{1} x1 ( x 2 \left(x_{2}\right. (x2, x 4 ) \left.x_{4}\right) x4); (8) ( x 1 , x 2 ) \left(x_{1}, x_{2}\right) (x1,x2) ( x 3 , x 4 ) \left(x_{3}, x_{4}\right) (x3,x4); (9) ( x 1 , x 3 ) \left(x_{1}, x_{3}\right) (x1,x3) ( x 2 , x 4 ) \left(x_{2}, x_{4}\right) (x2,x4)

答案

注: 答案提示只给出了(1), (3), (4), (6), (7) 和 (9)是独立的, 但没有给出理由, 请补充.

(1)

( x 1 x 2 ) = ( 1 0 0 1 ) ( x 1 x 2 ) C o v ( x 1 , x 2 ) = ( 1 , 0 ) ( 8 0 0 3 ) ( 0 1 ) = 0 \left(\begin{array}{c}x_{1} \\ x_{2}\end{array}\right)=\left(\begin{array}{cc}1&0 \\0&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\end{array}\right)\\ Cov(x_{1},x_{2})=\left(1,0\right)\left(\begin{array}{cc}8&0\\0&3\end{array}\right)\left(\begin{array}{c}0\\1\end{array}\right)=0 (x1x2)=(1001)(x1x2)Cov(x1,x2)=(1,0)(8003)(01)=0

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 x_{1} x1 x 2 x_{2} x2 相互独立

(2)

( x 1 x 3 ) = ( 1 0 0 1 ) ( x 1 x 3 ) C o v ( x 1 , x 3 ) = ( 1 , 0 ) ( 8 − 1 − 1 5 ) ( 0 1 ) = − 1 \left(\begin{array}{c}x_{1} \\ x_{3}\end{array}\right)=\left(\begin{array}{cc}1&0 \\0&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{3}\end{array}\right)\\ Cov(x_{1},x_{3})=\left(1,0\right)\left(\begin{array}{cc}8&-1\\-1&5\end{array}\right)\left(\begin{array}{c}0\\1\end{array}\right)=-1 (x1x3)=(1001)(x1x3)Cov(x1,x3)=(1,0)(8115)(01)=1

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 x_{1} x1 x 3 x_{3} x3 不相互独立

(3)

( x 2 x 3 ) = ( 1 0 0 1 ) ( x 2 x 3 ) C o v ( x 2 , x 3 ) = ( 1 , 0 ) ( 3 0 0 5 ) ( 0 1 ) = 0 \left(\begin{array}{c}x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{cc}1&0 \\0&1\end{array}\right)\left(\begin{array}{c}x_{2}\\x_{3}\end{array}\right)\\Cov(x_{2},x_{3})=(1,0)\left(\begin{array}{cc}3&0\\0&5\end{array}\right)\left(\begin{array}{c}0\\1\end{array}\right)=0 (x2x3)=(1001)(x2x3)Cov(x2,x3)=(1,0)(3005)(01)=0

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 2 x_{2} x2 x 3 x_{3} x3 相互独立

(4)

( x 3 x 4 ) = ( 1 0 0 1 ) ( x 3 x 4 ) C o v ( x 3 , x 4 ) = ( 1 , 0 ) ( 5 0 0 7 ) ( 0 1 ) = 0 \left(\begin{array}{c}x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{cc}1&0 \\0&1\end{array}\right)\left(\begin{array}{c}x_{3}\\x_{4}\end{array}\right)\\Cov(x_{3},x_{4})=(1,0)\left(\begin{array}{cc}5&0\\0&7\end{array}\right)\left(\begin{array}{c}0\\1\end{array}\right)=0 (x3x4)=(1001)(x3x4)Cov(x3,x4)=(1,0)(5007)(01)=0

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 3 x_{3} x3 x 4 x_{4} x4 相互独立

(5)

( x 1 + x 2 x 3 ) = ( 1 1 0 0 0 1 ) ( x 1 x 2 x 3 ) C o v ( x 1 + x 2 , x 3 ) = ( 1 , 1 , 0 ) ( 8 0 − 1 0 3 0 − 1 0 5 ) ( 0 0 1 ) = − 1 \left(\begin{array}{c}x_{1}+x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{ccc}1&1&0 \\ 0&0&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right)\\Cov(x_{1}+x_{2},x_{3})=(1,1,0)\left(\begin{array}{ccc}8&0&-1\\0&3&0\\-1&0&5\end{array}\right)\left(\begin{array}{c}0\\0\\1\end{array}\right)=-1 (x1+x2x3)=(101001) x1x2x3 Cov(x1+x2,x3)=(1,1,0) 801030105 001 =1

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 + x 2 x_{1}+x_{2} x1+x2 x 3 x_{3} x3 相互不独立

(6)

( x 1 + x 3 x 4 ) = ( 1 1 0 0 0 1 ) ( x 1 x 3 x 4 ) C o v ( x 1 + x 3 , x 4 ) = ( 1 , 1 , 0 ) ( 8 − 1 0 − 1 5 0 0 0 7 ) ( 0 0 1 ) = 0 \left(\begin{array}{c}x_{1}+x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{ccc}1&1&0 \\ 0&0&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{3}\\x_{4}\end{array}\right)\\Cov(x_{1}+x_{3},x_{4})=(1,1,0)\left(\begin{array}{ccc}8&-1&0\\-1&5&0\\0&0&7\end{array}\right)\left(\begin{array}{c}0\\0\\1\end{array}\right)=0 (x1+x3x4)=(101001) x1x3x4 Cov(x1+x3,x4)=(1,1,0) 810150007 001 =0

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 + x 3 x_{1}+x_{3} x1+x3 x 4 x_{4} x4 相互独立

(7)

( x 1 x 2 + x 4 ) = ( 1 0 0 0 1 1 ) ( x 1 x 2 x 4 ) C o v ( x 1 , x 2 + x 4 ) = ( 1 , 0 , 0 ) ( 8 0 0 0 3 2 0 2 7 ) ( 0 1 1 ) = 0 \left(\begin{array}{c}x_{1} \\x_{2}+ x_{4}\end{array}\right)=\left(\begin{array}{ccc}1&0&0 \\ 0&1&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\\x_{4}\end{array}\right)\\Cov(x_{1},x_{2}+x_{4})=(1,0,0)\left(\begin{array}{ccc}8&0&0\\0&3&2\\0&2&7\end{array}\right)\left(\begin{array}{c}0\\1\\1\end{array}\right)=0 (x1x2+x4)=(100101) x1x2x4 Cov(x1,x2+x4)=(1,0,0) 800032027 011 =0

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 x_{1} x1 x 2 + x 4 x_{2}+x_{4} x2+x4 相互独立

(8)

( x 1 + x 2 x 3 + x 4 ) = ( 1 1 0 0 0 0 1 1 ) ( x 1 x 2 x 3 x 4 ) C o v ( x 1 + x 2 , x 3 + x 4 ) = ( 1 , 1 , 0 , 0 ) ( 8 0 − 1 0 0 3 0 2 − 1 0 5 0 0 2 0 7 ) ( 0 0 1 1 ) = 1 \left(\begin{array}{c}x_{1}+x_{2} \\ x_{3}+x_{4}\end{array}\right)=\left(\begin{array}{cccc}1&1&0&0 \\ 0&0&1&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{array}\right)\\Cov(x_{1}+x_{2},x_{3}+x_{4})=(1,1,0,0)\left(\begin{array}{rrrr}8 & 0 & -1 & 0 \\ 0 & 3 & 0 & 2 \\ -1 & 0 & 5 & 0 \\ 0 & 2 & 0 & 7\end{array}\right)\left(\begin{array}{c}0\\0\\1\\1\end{array}\right)=1 (x1+x2x3+x4)=(10100101) x1x2x3x4 Cov(x1+x2,x3+x4)=(1,1,0,0) 8010030210500207 0011 =1

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 + x 2 x_{1}+x_{2} x1+x2 x 3 + x 4 x_{3}+x_{4} x3+x4 不相互独立

(9)

( x 1 + x 3 x 2 + x 4 ) = ( 1 0 1 0 0 1 0 1 ) ( x 1 x 2 x 3 x 4 ) C o v ( x 1 + x 3 , x 2 + x 4 ) = ( 1 , 0 , 1 , 0 ) ( 8 0 − 1 0 0 3 0 2 − 1 0 5 0 0 2 0 7 ) ( 0 1 0 1 ) = 0 \left(\begin{array}{c}x_{1}+x_{3} \\ x_{2}+x_{4}\end{array}\right)=\left(\begin{array}{cccc}1&0&1&0 \\ 0&1&0&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{array}\right)\\Cov(x_{1}+x_{3},x_{2}+x_{4})=(1,0,1,0)\left(\begin{array}{rrrr}8 & 0 & -1 & 0 \\ 0 & 3 & 0 & 2 \\ -1 & 0 & 5 & 0 \\ 0 & 2 & 0 & 7\end{array}\right)\left(\begin{array}{c}0\\1\\0\\1\end{array}\right)=0 (x1+x3x2+x4)=(10011001) x1x2x3x4 Cov(x1+x3,x2+x4)=(1,0,1,0) 8010030210500207 0101 =0

从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 + x 3 x_{1}+x_{3} x1+x3 x 2 + x 4 x_{2}+x_{4} x2+x4 相互独立

3.8

x ∼ N 2 ( μ , Σ ) \boldsymbol{x} \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xN2(μ,Σ), 其中 x = ( x 1 , x 2 ) ′ , μ = ( μ 1 , μ 2 ) ′ , Σ = σ 2 ( 1 ρ ρ 1 ) \boldsymbol{x}=\left(x_{1}, x_{2}\right)^{\prime}, \boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)^{\prime}, \boldsymbol{\Sigma}=\sigma^{2}\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right) x=(x1,x2),μ=(μ1,μ2),Σ=σ2(1ρρ1), 试证 x 1 + x 2 x_{1}+x_{2} x1+x2 x 1 − x 2 x_{1}-x_{2} x1x2 相互独立。

答案

因为 x ∼ N 2 ( μ , Σ ) \boldsymbol{x} \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) xN2(μ,Σ),由 y ∼ N r ( C μ + b , C Σ C ′ ) \boldsymbol{y} \sim N_{r}\left(\boldsymbol{C} \boldsymbol{\mu}+\boldsymbol{b}, \boldsymbol{C} \boldsymbol{\Sigma} \boldsymbol{C}^{\prime}\right) yNr(Cμ+b,CΣC)得:
( x 1 + x 2 x 1 − x 2 ) = ( 1 1 1 − 1 ) ( x 1 x 2 ) ∼ N 2 ( μ , Σ ) \left(\begin{array}{l}x_{1}+x_{2} \\ x_{1}-x_{2}\end{array}\right)=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2}\end{array}\right) \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) (x1+x2x1x2)=(1111)(x1x2)N2(μ,Σ)

又因为
Cov ⁡ ( x 1 + x 2 , x 1 − x 2 ) = Cov ⁡ ( ( 1 , 1 ) ( x 1 x 2 ) , ( 1 , − 1 ) ( x 1 x 2 ) ) = σ 2 ( 1 , 1 ) ( 1 ρ ρ 1 ) ( 1 − 1 ) = 0 \operatorname{Cov}\left(x_{1}+x_{2}, x_{1}-x_{2}\right)=\operatorname{Cov}\left((1,1)\left(\begin{array}{l}x_{1} \\ x_{2}\end{array}\right),(1,-1)\left(\begin{array}{l}x_{1} \\ x_{2}\end{array}\right)\right)=\sigma^{2}(1,1)\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)\left(\begin{array}{r}1 \\ -1\end{array}\right)=0 Cov(x1+x2,x1x2)=Cov((1,1)(x1x2),(1,1)(x1x2))=σ2(1,1)(1ρρ1)(11)=0
从而由 S 3.2 S3.2 S3.2中的性质 ( 6 ) (6) (6)知, x 1 + x 2 x_{1}+x_{2} x1+x2 x 1 − x 2 x_{1}-x_{2} x1x2 相互独立。

前言 第一章 矩阵代数  1.1 定义  1.2 矩阵的运算  1.3 行列式  1.4 矩阵的逆  1.5 矩阵的秩  1.6 特征值和特征向量  1.7 正定矩阵和非负定矩阵  1.8 特征值的极值问题 小结 附录1-1 SAS的应用 习题 第二章 随机向量  2.1 一元分布  2.2 多元分布  2.3 矩  2.4 随机向量的变换 *§2.5 特征函数 小结 附录2-1 SAS的应用 习题 第三章 多元正态分布  3.1 多元正态分布的定义  3.2 多元正态分布的性质  3.3 极大似然估计及估计量的性质  3.4 〖WTHX〗〖Akx-〗和/n-1)S的抽样分布 *§3.5 二次型分布 小结 附录3-1 SAS的应用 附录3-2 §3.2中若干性质的数学证明 习题 第四章 多元正态总体的统计推断  4.1 一元情形的回顾  4.2 单个总体均值的推断  4.3 单个总体均值分量间结构关系的检验  4.4 两个总体均值的比较推断  4.5 两个总体均值分量间结构关系的检验  4.6 多个总体均值的比较检验/多元方差分析)  4.7 总体相关系数的推断 小结 附录4-1 SAS的应用 附录4-2 霍特林T2统计量的导出 附录4-3 威尔克斯Λ统计量的基本性质 习题 第五章 判别分析  5.1 引言  5.2 距离判别  5.3 贝叶斯判别  5.4 费希尔判别 小结 附录5-1 SAS的应用 习题 第六章 聚类分析  6.1 引言  6.2 距离和相似系数  6.3 系统聚类法  6.4 动态聚类法 小结 附录6-1 SAS的应用 附录6-2 若干公式的推导 习题 第七章 主成分分析  7.1 引言  7.2 总体的主成分  7.3 样本的主成分 小结 附录7-1 SAS的应用 习题 第八章 因子分析  8.1 引言  8.2 因子模型  8.3 参数估计  8.4 因子旋转  8.5 因子得分 小结 附录8-1 SAS的应用 习题 第九章 典型相关分析  9.1 引言  9.2 总体典型相关  9.3 样本典型相关  9.4 典型相关系数的显著性检验 小结 附录9-1 SAS的应用 习题 附录一 习题参考答案 附录二 各类数值表 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OLSRR

随缘

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值