认识链表以及其常见操作
1.链表的概念及其结构
1.1链表的概念
链表是一种物理存储结构上非连续存储结构,数据元素的逻辑顺序是通过链表中的引用链接次序实现的 。
链表的每个节点都是有数据域和指针域组成。
指针域用来储存数据,指针域用来指向下一个节点。
如下图所示
1.2链表的结构和种类
链表主要分为三类:
- 带头和不带头
- 单向和双向
- 循环和非循环
这三类可以演化出8种结构:
单向:
单向带头循环
单向带头非循环
单向不带头循环
单向不带头非循环
双向:
双向带头循环
双向带头非循环
双向不带头循环
双向不带头非循环
本篇博客重点是单向不带头非循环
带头和不带头的区别:
带头:这个链表的头结点随时可能发生改变
不带头:这个链表的头结点不在发生改变
常见链表示意图:
无头单向链表
有头单向链表:
循环单链表:
在Java的集合框架库中LinkedList底层实现就是无头双向循环链表。
无头双向循环链表:
2.链表的实现
2.1无头单向非循环链表实现
class ListNode{
public int val;//数据域
public ListNode next;//null 指针域
public ListNode(int val){
this.val=val;
}
}
public class MyLinkedList {
public ListNode head;//标识单链表的头节点
//采用穷举的方式创建链表,只是为了方便理解
public void createList(){
//对每一个节点进行赋值
ListNode listNode1 = new ListNode(1);
ListNode listNode2 = new ListNode(2);
ListNode listNode3 = new ListNode(3);
ListNode listNode4 = new ListNode(4);
//将节点之间链接起来
listNode1.next = listNode2;
listNode2.next = listNode3;
listNode3.next = listNode4;
this.head = listNode1;//指明头节点
}
2.1.1准备方法
2.1.1.1打印单链表
//打印单链表
public void show(){
ListNode cur = this.head;//防止在打印的过程中导致头节点位置偏移
while(cur!=null){//不是空节点
System.out.println(cur.val+" ");
cur=cur.next;//指向节点向后移动一位
}
System.out.println();
}
2.1.1.2得到链表的长度
//得到链表的长度
public int size(){
ListNode cur = this.head;
int count = 0;//统计链表的长度
while(cur!=null){
count++;
cur=cur.next;
}
return count;
}
2.1.1.3查找是否包含关键自key在单链表中
//查找是否包含关键自key在单链表中
public boolean contains(int val){
ListNode cur = this.head;
while(cur!=null){
if(cur.val==val){
return true;
}
cur = cur.next;
}
return false;
}
2.1.1.4查找具有指定值的前一个节点
//查找具有指定值的前一个节点
public ListNode searchPrevNode(int val){
ListNode cur = this.head;
while(cur.next!=null){
if(cur.next.val == val){
return cur;
}
cur = cur.next;
}
return null;
}
2.1.1.4查找是否包含关键字key在单链表当中
//查找是否包含关键自key在单链表中
public boolean contains(int val){
ListNode cur = this.head;
while(cur!=null){
if(cur.val==val){
return true;
}
cur = cur.next;
}
return false;
}
2.1.2头插法
//头插法
public void addFirst(int data){
ListNode listNode = new ListNode(data);
if(this.head == null){//判断是否为第一次插入
this.head = listNode;
}else{
listNode.next = this.head;//先绑定后一个节点
this.head = listNode;//更新头节点位置
}
}
2.1.3尾插法
//尾插法
public void addLast(int data){
ListNode listNode = new ListNode(data);
if(this.head == null){//判断是否为第一次插入
this.head = listNode;
}else{
ListNode cur = this.head;//防止头节点位置偏移
while(cur.next!=null){
cur = cur.next;//找到尾节点
}
cur.next = listNode;//链接节点
}
}
2.1.4任意位置插入,假设第一个数据节点为0下标
//任意位置插入,第一个数据节点为0号下标
public void addIndex(int index,int data){
if(index < 0 || index > size()){//首先判断坐标是否合法
System.out.println("下标不合法");
return;
}
//若插入位置为第一个位置,头插法
if(index == 0){
addFirst(data);
return;
}
//若插入位置为最后一个位置,尾插法
if(index == size()){
addLast(data);
return;
}
ListNode cur = searchPrev(index);//找到指定的坐标位置
ListNode listNode = new ListNode(data);
//插入节点
listNode.next = cur.next;
cur.next = listNode;
}
2.1.5删除第一次出现关键字为key的节点
删除某一个节点的原理就是不再有引用指向该节点,Java虚拟机会自动回收
//删除第一次出现关键字key的节点
public void remove(int val){
if(this.head ==null) return;//没有节点直接返回
//单独判断头节点的问题
if(this.head.val == val){
this.head = this.head.next;
return;
}
ListNode cur = searchPrevNode(val);//查找到指定值的坐标位置的前一个节点
if(cur ==null){//判断坐标是否为空
System.out.println("没有你要删除的节点");
return;
}//删除该节点
ListNode del = cur.next;
cur.next = del.next;
}
2.1.6删除所有值为key的节点
//删除所有值为key的节点
public void removeAllKey(int val){
if(this.head == null){//若没有节点,直接返回
return;
}
ListNode prev = this.head;
ListNode cur = this.head.next;
while(cur!=null){//节点不为空,进入循环
if(cur.val == val){//找到一个与指定值相同的节点,删除
prev.next = cur.next;
cur = cur.next;//删除后向后移动一位
}else{//与指定值不同,向后移动一位
prev = cur;
cur = cur.next;
}
}
//最后判断头节点是否为该值
if(this.head.val == val){
this.head = this.head.next;
}
}
2.1.7清空链表
//清空链表
public void clare(){
while(this.head!=null){
ListNode curNext = this.head.next;
this.head = null;
this.head = curNext;
}
return;
}
2.2无头双向链表实现
class ListNodeD{
public int data;//数据域
public ListNodeD prev;//前驱
public ListNodeD next;//后继
public ListNodeD(int data){
this.data = data;
}
}
public class MyRealLinkedList {
public ListNodeD head;//头
public ListNodeD last;//尾
public MyRealLinkedList(){
//this.head = new ListNode(-1);傀儡节点
}
2.2.1准备方法
2.2.1.1查找节点
//查找节点
public ListNodeD findIndex(int index){
ListNodeD cur = this.head;
while(index != 0){
cur = cur.next;
index--;
}
return cur;
}
2.2.1.2得到链表的长度
//得到链表的长度
public int size(){
int count = 0;
if(this.head == null) return count;//链表长度为零
ListNodeD cur = this.head;
while(cur != null){
count++;
cur = cur.next;
}
return count;
}
2.2.1.3查找是否包含关键字key在单链表当中
//查找是否包含关键字key在链表中
public boolean contains(int key){
if(this.head == null) return false;
ListNodeD cur = this.head;
while(cur!=null){
if(cur.data == key){
return true;
}
cur = cur.next;
}
return false;
}
2.2.1头插法
//头插法
public void addFirst(int data){
ListNodeD node = new ListNodeD(data);
if(head == null){
this.head = node;
}else{
node.next = this.head;
this.head.prev = node;
this.head = node;
}
}
2.2.2尾插法
//尾插法
public void addLast(int data){
ListNodeD node = new ListNodeD(data);
if(head == null){
this.head = node;
this.last = node;
}else{
last.next = node;
node.prev = last;
last = node;
}
}
2.2.3任意位置插入,假设第一个数据节点为0下标
//任意位置插入,第一个节点为0下标
public void addIndex(int index,int data){
if(index<0 || index>size()){
System.out.println("index 位置不合法");
return;
}
if(index == 0){
addFirst(data);
return;
}
if(index == size()){
addLast(data);
return;
}
ListNodeD cur = findIndex(index);
ListNodeD node = new ListNodeD(data);
node.next = cur;
cur.prev.next = node;
node.prev = cur;
cur.prev = node;
}
2.2.4删除第一次出现关键字为key的节点
//删除第一次出现key的节点
public void remove(int key){
ListNodeD cur = this.head;
while(cur!=null){
if(cur.data == key){
//判断是不是头节点
if(cur == this.head){
this.head = this.head.next;
if(this.head == null){//防止只有一个节点
this.last = null;
}else{
this.head.prev = null;
}
}else{
cur.prev.next = cur.next;
//尾巴节点
if(cur.next == null){
this.last = cur.prev;
}else{
cur.next.prev = cur.prev;
}
}
return;
}else{
cur = cur.next;
}
}
}
2.2.5删除所有值为key的节点
//删除所有值为key的节点
public void removeAllKey(int key){
ListNodeD cur = this.head;
while(cur!=null){
if(cur.data == key){
//判断是不是头节点
if(cur == this.head){
this.head = this.head.next;
if(this.head == null){//防止只有1个节点
this.last = null;
}else{
this.head.prev = null;
}
}else{
cur.prev.next = cur.next;
//尾巴节点
if(cur.next == null){
this.last = cur.prev;
}else{
cur.next.prev = cur.prev;
}
}
cur = cur.next;//继续往后走,直到null的时候
}else{
cur = cur.next;
}
}
}
2.2.6清空链表
//
public void clear(){
ListNodeD cur = this.head;
while(cur != null){
ListNodeD curNext = cur.next;
cur.prev = null;
cur.next = null;
cur = curNext;
}
this.head = null;
this.last = null;
}
}
单链表结构与顺序存储结构的优缺点
存储分配方式:
- 顺序存储结构用一段连续存储单元依次存储线性表数据元素
- 单链表采用链式存储结构,用一组任意的存储单元存放线性表的元素
时间性能:
- 查找
顺序存储结构O(1)
单链表O(n) - 插入和删除
顺序存储结构需要平移移动表一半的元素,时间复杂度为O(n)
单链表在找出位置的指针后插入和删除的复杂度仅为O(1)
空间性能:
- 顺序存储结构需要与分配存储空间,分大了浪费,分小了易发生溢出
- 单链表不需要分配存储空间,只要有就可以分配,元素个数也不受限制
结论:
- 若线性表需要频繁的查找,很少进行插入和删除操作,宜采用顺序存储结构
- 当线性表中元素个数变化较大或者根本不知道有多大时,最好采用单链表结构