704.二分查找
题目链接:704.二分查找
文档讲解:代码随想录/二分查找
视频讲解:视频讲解二分查找
状态:已完成(2遍)
解题过程
看到题目的第一想法
虽然知道题目名字叫二分查找,但我不知道什么是二分查找。。。索性用笨办法(运行时间果然垫底)。
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function(nums, target) {
let ans = -1;
let length = nums.length;
if(target<nums[0]||target>nums[length-1]) return ans;
for(let i =0;i<length;i++){
if(nums[i]==target){
ans = i;
return ans
}
}
return ans;
};
看完代码随想录之后的想法
了解了左闭右闭和左闭右开的两种二分查找方法。
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function(nums, target) {
let left = 0,right = nums.length - 1;
while(left<=right){
let middle = Math.floor((left+right)/2);
if(nums[middle]>target){
right = middle -1;
}else if(nums[middle]<target){
left = middle + 1;
}else{
return middle;
}
}
return -1;
};
看完视频讲解之后又在leetcode上手搓了一版,发现与代码随想录文字讲解中代码有一处不同,就是 :
mid = left + ((right - left) >> 1);
>> 1
是右移运算符,将结果向右移动一位,相当于除以2并向下取整;
-
避免整数溢出:当
left
和right
非常大时,直接相加可能会导致整数溢出。通过计算(right - left)
作为距离,可以避免这个问题。 -
避免小数结果:使用位运算的右移操作
>>
可以确保结果是整数,避免出现小数索引。 -
保持索引一致性:通过使用
left + ((right - left) >> 1)
的方式计算中间索引,可以确保该索引始终在left
和right
之间,而不会越界。
需要注意的是,这种计算方式要求 left
和 right
是整数,并且 left
小于等于 right
。在实际应用中,我们通常会根据具体问题和数据结构来选择适当的计算方式,以确保正确性和效率。
总结
初步认识了二分法的原理和步骤,理解了左闭右闭和左闭右开两种解法的细节差别。
27.移除元素
题目链接:27.移除元素
文档讲解:代码随想录/移除元素
视频讲解:视频讲解移除元素
状态:已完成(2遍)
解题过程
看到题目的第一想法
要求不要使用额外的数组空间,你必须仅使用 O(1)
额外空间并原地修改输入数组。那我没有想法。
看完代码随想录之后的想法
了解了快慢指针,快指针在这里指的是新数组的值,慢指针指的是新数组的索引。
/**
* @param {number[]} nums
* @param {number} val
* @return {number}
*/
var removeElement = function(nums, val) {
let slowIndex = 0;
for(let fastIndex = 0;fastIndex<nums.length;fastIndex++){
if(nums[fastIndex]!==val){
nums[slowIndex++]=nums[fastIndex];
}
}
return slowIndex;
};
总结
初步认识了快慢指针,快慢指针在这里能用一个for循环干两个for循环的活。快指针是新数组的值,慢指针是新数组的序列。