代码随想录算法训练营第二十一天| 513.找树左下角的值、112. 路径总和、106.从中序与后序遍历序列构造二叉树

 513.找树左下角的值

题目链接:513.找树左下角的值

文档讲解:代码随想录/找树左下角的值

视频讲解:视频讲解-找树左下角的值

状态:已完成(2遍)

解题过程 

看到题目的第一想法

 这道题终于让我时隔已久的逮到用层序遍历的机会了,直接一层层找下去,最后一层的第一个元素就是树左下角的值,十分简便。

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number}
 */
var findBottomLeftValue = function(root) {
    let queue = [],ans = [];
    queue = [root];
    while(queue.length){
        let len = queue.length;
        let smallAns = [];
        while(len--){
            let node = queue.shift();
            smallAns.push(node.val);
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
        ans.push(smallAns);
    }
    return ans[ans.length-1][0];
};

运行提交都没有问题。

看完代码随想录之后的想法 

这题用递归法的话还是和深度联系起来,找到深度最大的第一个叶子结点,即可完成题目要求。

看了讲解手搓代码如下:

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number}
 */
var findBottomLeftValue = function(root) {
    let maxPath = 0,ans = 0;
    const leftFirst = function(node,path){
        //终止条件
        if(node.left == null&&node.right == null){
            if(path>maxPath){
                //确保只记录每次深度最大的时候的第一个节点
                maxPath=path;
                ans=node.val;
            }
        }
        node.left&&leftFirst(node.left,path+1);
        node.right&&leftFirst(node.right,path+1);
    }
    leftFirst(root,1);
    return ans;
};

总结

递归虽然巧妙,但有时不那么容易想到,所以层序迭代也是十分重要的。

二刷还是没抵挡住层序遍历的诱惑哈哈。 


 112. 路径总和

题目链接:112. 路径总和

文档讲解:代码随想录/路径总和

视频讲解:视频讲解-路径总和

状态:已完成(2遍)

解题过程  

看到题目的第一想法

这题我第一想法是递归,既然要计算每条路径之和,那么也就意味着要把父节点的值带到子节点里去运算,那么肯定选择前序遍历。每当遍历到叶子结点的时候,将当前路径的和与目标值作比对,如果相同,则将ans改为true,否则不用做改动。

手搓代码如下:

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} targetSum
 * @return {boolean}
 */
var hasPathSum = function (root, targetSum) {
    let ans = false;
    const isSum = function (node, sum) {
        if(node == null)return;
        if (node.left == null && node.right == null) {//等到叶子结点的时候再把路径和和目标值作比对
            if (sum+node.val  == targetSum) {
                ans = true;
            }
        }
        node.left && isSum(node.left, sum + node.val);
        node.right && isSum(node.right, sum + node.val);
    }
    isSum(root,0)
    return ans;
};

提交没有问题,能直接用递归做出来还是很高兴的。 

 看完代码随想录之后的想法 

这里要纠正一下刚刚的思路,因为这里对左右子节点的递归,是直接在参数里加当前节点的val的,所以其实用什么序递归都没问题。讲解代码是用了目标值减当前数的方法,理解起来似乎略有困难。

讲解代码如下:

/**
 * @param {treenode} root
 * @param {number} targetsum
 * @return {boolean}
 */
let haspathsum = function (root, targetsum) {
  // 递归法
  const traversal = (node, cnt) => {
    // 遇到叶子节点,并且计数为0
    if (cnt === 0 && !node.left && !node.right) return true;
    // 遇到叶子节点而没有找到合适的边(计数不为0),直接返回
    if (!node.left && !node.right) return false;

    //  左(空节点不遍历).遇到叶子节点返回true,则直接返回true
    if (node.left && traversal(node.left, cnt - node.left.val)) return true;
    //  右(空节点不遍历)
    if (node.right && traversal(node.right, cnt - node.right.val)) return true;
    return false;
  };
  if (!root) return false;
  return traversal(root, targetsum - root.val);

  // 精简代码:
  // if (!root) return false;
  // if (!root.left && !root.right && targetsum === root.val) return true;
  // return haspathsum(root.left, targetsum - root.val) || haspathsum(root.right, targetsum - root.val);
};

总结

这道题因为单层递归逻辑中针对中间节点是没有处理逻辑的,所以前中后序递归都是可以的。

二刷对自己的递归方法做了一点修改,感觉第一遍做的时候在最后叶子结点没有return。

var hasPathSum = function (root, targetSum) {
    let ans = false;
    const isSum = function (node, sum) {
        if(node == null)return;
        if (node.left == null && node.right == null) {//等到叶子结点的时候再把路径和和目标值作比对
            if (sum+node.val  == targetSum) {
                ans = true;
            }
            return;
        }
        node.left && isSum(node.left, sum + node.val);
        node.right && isSum(node.right, sum + node.val);
    }
    isSum(root,0)
    return ans;
};


 

 106.从中序与后序遍历序列构造二叉树

题目链接:106.从中序与后序遍历序列构造二叉树

文档讲解:代码随想录/从中序与后序遍历序列构造二叉树

视频讲解:视频讲解-从中序与后序遍历序列构造二叉树

状态:已完成(2遍)

解题过程  

看到题目的第一想法

直接投降。

 看完代码随想录之后的想法 

确实是第一次见识到这个思路,每次先看后序,找到中间节点,再去中序里切割为左中右,然后再去后序里对应切割,再找到每个部分的中间节点,如此往复。

讲解代码如下:

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {number[]} inorder
 * @param {number[]} postorder
 * @return {TreeNode}
 */
var buildTree = function(inorder, postorder) {
    if (!inorder.length) return null;
    const rootVal = postorder.pop(); // 从后序遍历的数组中获取中间节点的值, 即数组最后一个值
    let rootIndex = inorder.indexOf(rootVal); // 获取中间节点在中序遍历中的下标
    const root = new TreeNode(rootVal); // 创建中间节点
    root.left = buildTree(inorder.slice(0, rootIndex), postorder.slice(0, rootIndex)); // 创建左节点
    root.right = buildTree(inorder.slice(rootIndex + 1), postorder.slice(rootIndex)); // 创建右节点
    return root;
};

希望二刷的时候可以对这个思路以及切割方法印象深刻。 

总结

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值