之前我们一直在谈的是一对一的线性结构,可现实中,还有很多一对多的情况需要处理,所以我们需要研究这种一对多的数据结构——“树”,考虑它的各种特性,来解决我们在编程中碰到的相关问题。
1. 树的定义
树(Tree)是n(n≥0)个结点的有限集。n=0时称为空树。在任意一棵非空树中:(1)有且仅有一个特定的称为根(Root)的结点;(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、……、Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree),如下图所示。
树的定义其实就是我们在讲解栈时提到的递归的方法。也就是在树的定义之中还用到了树的概念,这是一种比较新的定义方法。下图的子树T1和子树T2就是根结点A的子树。当然,D、G、H、I组成的树又是B为根结点的子树,E、J组成的树是C为结点的子树。
对于树的定义还需要强调两点:
1. n>0时根结点是唯一的,不可能存在多个根结点,别和现实中的大树混在一起,现实中的树有很多根须,那是真实的树,数据结构中的树是只能有一个根结点。
2.m>0时,子树的个数没有限制,但它们一定是互不相交的。像下图中的两个结构就不符合树的定义,因为它们都有相交的子树。
2. 结点
2.1 节点分类
树的结点包含一个数据元素及若干指向其子树的分支。结点拥有的子树数称为结点的度(Degree)。度为0的结点称为叶结点(Leaf)或终端结点;度不为0的结点称为非终端结点或分支结点。除根结点之外,分支结点也称为内部结点。树的度是树内各结点的度的最大值。如下图所示,因为这棵树结点的度的最大值是结点D的度,为3,所以树的度也为3。
2.2. 结点间关系
结点的子树的根称为该结点的孩子(Child),相应地,该结点称为孩子的双亲(Parent)。嗯,为什么不是父或母,叫双亲呢?呵呵,对于结点来说其父母同体,唯一的一个,所以只能把它称为双亲了。同一个双亲的孩子之间互称兄弟(Sibling)。结点的祖先是从根到该结点所经分支上的所有结点。所以对于H来说,D、B、A都是它的祖先。反之,以某结点为根的子树中的任一结点都称为该结点的子孙。B的子孙有D、G、H、I,如下图所示。
2.3 树的其他相关概念
结点的层次(Level)从根开始定义起,根为第一层,根的孩子为第二层。若某结点在第l层,则其子树的根就在第l+1层。其双亲在同一层的结点互为堂兄弟。显然下图中的D、E、F是堂兄弟,而G、H、I、J也是。树中结点的最大层次称为树的深度(Depth)或高度,当前树的深度为4。
如果将树中结点的各子树看成从左至右是有次序的,不能互换的,则称该树为有序树,否则称为无序树。
森林(Forest)是m(m≥0)棵互不相交的树的集合。对树中每个结点而言,其子树的集合即为森林。
对比线性表与树的结构,它们有很大的不同,如下图所示。
3. 树的抽象数据类型
相对于线性结构,树的操作就完全不同了,这里我们给出一些基本和常用操作。
4. 树的存储结构
说到存储结构,就会想到我们前面章节讲过的顺序存储和链式存储两种结构。先来看看顺序存储结构,用一段地址连续的存储单元依次存储线性表的数据元素。这对于线性表来说是很自然的,对于树这样一多对的结构呢?
树中某个结点的孩子可以有多个,这就意味着,无论按何种顺序将树中所有结点存储到数组中,结点的存储位置都无法直接反映逻辑关系,你想想看,数据元素挨个的存储,谁是谁的双亲,谁是谁的孩子呢?简单的顺序存储结构是不能满足树的实现要求的。
不过充分利用顺序存储和链式存储结构的特点,完全可以实现对树的存储结构的表示。我们这里要介绍三种不同的表示法:双亲表示法、孩子表示法、孩子兄弟表示法。
4.1 双亲表示法
我们人可能因为种种原因,没有孩子,但无论是谁都不可能是从石头里蹦出来的,孙悟空显然不能算是人,所以是人一定会有父母。树这种结构也不例外,除了根结点外,其余每个结点,它不一定有孩子,但是一定有且仅有一个双亲。
我们假设以一组连续空间存储树的结点,同时在每个结点中,附设一个指示器指示其双亲结点到链表中的位置。也就是说,每个结点除了知道自己是谁以外,还知道它的双亲在哪里。它的结点结构为下表所示。
其中data是数据域,存储结点的数据信息。而parent是指针域,存储该结点的双亲在数组中的下标。
以下是我们的双亲表示法的结点结构定义代码。
有了这样的结构定义,我们就可以来实现双亲表示法了。由于根结点是没有双亲的,所以我们约定根结点双亲的位置域设置为-1,这也就意味着,我们所有的结点都存有它双亲的位置。如图中的树结构和下表的树双亲表示所示。
这样的存储结构,我们可以根据结点的parent指针很容易找到它的双亲结点,所用的时间复杂度为O(1),直到parent为-1时,表示找到了树结点的根。可如果我们要知道结点的孩子是什么,对不起,请遍历整个结构才行。
这真是麻烦,能不能改进一下呢?
当然可以。我们增加一个结点最左边孩子的域,不妨叫它长子域,这样就可以很容易得到结点的孩子。如果没有孩子的结点,这个长子域就设置为-1,如下表所示。
对于有0个或1个孩子结点来说,这样的结构是解决了要找结点孩子的问题了。甚至是有2个孩子,知道了长子是谁,另一个当然就是次子了。
另外一个问题场景,我们很关注各兄弟之间的关系,双亲表示法无法体现这样的关系,那我们怎么办?嗯,可以增加一个右兄弟域来体现兄弟关系,也就是说,每一个结点如果它存在右兄弟,则记录下右兄弟的下标。同样的,如果右兄弟不存在,则赋值为-1,如下表所示。
但如果结点的孩子很多,超过了2个。我们又关注结点的双亲、又关注结点的孩子、还关注结点的兄弟,而且对时间遍历要求还比较高,那么我们还可以把此结构扩展为有双亲域、长子域、再有右兄弟域。存储结构的设计是一个非常灵活的过程。一个存储结构设计得是否合理,取决于基于该存储结构的运算是否适合、是否方便,时间复杂度好不好等。注意也不是越多越好,有需要时再设计相应的结构。就像再好听的音乐,不停反复听上千遍也会腻味,再好看的电影,一段时间反复看上百遍,也会无趣,你们说是吧?
4.2 孩子表示法
换一种完全不同的考虑方法。由于树中每个结点可能有多棵子树,可以考虑用多重链表,即每个结点有多个指针域,其中每个指针指向一棵子树的根结点,我们把这种方法叫做多重链表表示法。不过,树的每个结点的度,也就是它的孩子个数是不同的。所以可以设计两种方案来解决。
方案一
一种是指针域的个数就等于树的度,复习一下,树的度是树各个结点度的最大值。其结构如下表所示。
其中data是数据域。child1到childd是指针域,用来指向该结点的孩子结点。
用之前的树来举例,情况如下。
这种方法对于树中各结点的度相差很大时,显然是很浪费空间的,因为有很多的结点,它的指针域都是空的。不过如果树的各结点度相差很小时,那就意味着开辟的空间被充分利用了,这时存储结构的缺点反而变成了优点。
既然很多指针域都可能为空,为什么不按需分配空间呢。于是我们有了第二种方案。
方案二
第二种方案每个结点指针域的个数等于该结点的度,我们专门取一个位置来存储结点指针域的个数,其结构如下表所示。
其中data为数据域,degree为度域,也就是存储该结点的孩子结点的个数,child1到childd为指针域,指向该结点的各个孩子的结点。
用之前的树来举例,情况如下。
这种方法克服了浪费空间的缺点,对空间利用率是很高了,但是由于各个结点的链表是不相同的结构,加上要维护结点的度的数值,在运算上就会带来时间上的损耗。
能否有更好的方法,既可以减少空指针的浪费又能使结点结构相同。
仔细观察,我们为了要遍历整棵树,把每个结点放到一个顺序存储结构的数组中是合理的,但每个结点的孩子有多少是不确定的,所以我们再对每个结点的孩子建立一个单链表体现它们的关系。
这就是我们要讲的孩子表示法。具体办法是,把每个结点的孩子结点排列起来,以单链表作存储结构,则n个结点有n个孩子链表,如果是叶子结点则此单链表为空。然后n个头指针又组成一个线性表,采用顺序存储结构,存放进一个一维数组中,如下图所示。
为此,设计两种结点结构,一个是孩子链表的孩子结点,如下表所示。
其中child是数据域,用来存储某个结点在表头数组中的下标。next是指针域,用来存储指向某结点的下一个孩子结点的指针。
另一个是表头数组的表头结点,如下表所示。
其中data是数据域,存储某结点的数据信息。firstchild是头指针域,存储该结点的孩子链表的头指针。
以下是我们的孩子表示法的结构定义代码。
这样的结构对于我们要查找某个结点的某个孩子,或者找某个结点的兄弟,只需要查找这个结点的孩子单链表即可。对于遍历整棵树也是很方便的,对头结点的数组循环即可。
但是,这也存在着问题,我如何知道某个结点的双亲是谁呢?比较麻烦,需要整棵树遍历才行,难道就不可以把双亲表示法和孩子表示法综合一下吗?当然是可以。如下图所示。
我们把这种方法称为双亲孩子表示法,应该算是孩子表示法的改进。至于这个表示法的具体结构定义,这里就略过,留给同学们自己去设计了。
4.3 孩子兄弟表示法
刚才我们分别从双亲的角度和从孩子的角度研究树的存储结构,如果我们从树结点的兄弟的角度又会如何呢?当然,对于树这样的层级结构来说,只研究结点的兄弟是不行的,我们观察后发现,任意一棵树,它的结点的第一个孩子如果存在就是唯一的,它的右兄弟如果存在也是唯一的。因此,我们设置两个指针,分别指向该结点的第一个孩子和此结点的右兄弟。
结点结构如下表所示。
其中data是数据域,firstchild为指针域,存储该结点的第一个孩子结点的存储地址,rightsib是指针域,存储该结点的右兄弟结点的存储地址。
结构定义代码如下。
对于之前的例子来看,这种方法实现的示意图如下图所示。
这种表示法,给查找某个结点的某个孩子带来了方便,只需要通过fistchild找到此结点的长子,然后再通过长子结点的rightsib找到它的二弟,接着一直下去,直到找到具体的孩子。当然,如果想找某个结点的双亲,这个表示法也是有缺陷的,那怎么办呢?
呵呵,对,如果真的有必要,完全可以再增加一个parent指针域来解决快速查找双亲的问题,这里就不再细谈了。
其实这个表示法的最大好处是它把一棵复杂的树变成了一棵二叉树。我们把上图变变形就成了下图这个样子。
这样就可以充分利用二叉树的特性和算法来处理这棵树了。嗯?有人问,二叉树是什么?哈哈,别急,这正是我接下来要重点讲的内容。
5. 二叉树
5.1 二叉树的定义
现在我们来做个游戏,我在纸上已经写好了一个100以内的正整数数字,请大家想办法猜出我写的是哪一个?注意你们猜的数字不能超过7个,我的回答只会告诉你是“大了”或“小了”。
这个游戏在一些电视节目中,猜测一些商品的定价时常会使用。我看到过有些人是一点一点的数字累加的,比如5、10、15、20这样猜,这样的猜数策略太低级了,显然是没有学过数据结构和算法的人才做得出的事。
其实这是一个很经典的折半查找算法。如果我们用下图(下三层省略)的办法,就一定能在7次以内,猜出结果来。
由于是100以内的正整数,所以我们先猜50(100的一半),被告之“大了”,于是再猜25(50的一半),被告之“小了”,再猜37(25与50的中间数),小了,于是猜43,大了,40,大了,38,小了,39,完全正确。过程如下表所示。
我们发现,如果用这种方式进行查找,效率高得不是一点点。对于折半查找的详细讲解,我们后面章节再说。不过对于这种在某个阶段都是两种结果的情形,比如开和关、0和1、真和假、上和下、对与错,正面与反面等,都适合用树状结构来建模,而这种树是一种很特殊的树状结构,叫做二叉树。
二叉树(Binary Tree)是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
下图就是一棵二叉树。
5.2 二叉树特点
二叉树的特点有:
■ 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。注意不是只有两棵子树,而是最多有。没有子树或者有一棵子树都是可以的。
■ 左子树和右子树是有顺序的,次序不能任意颠倒。就像人是双手、双脚,但显然左手、左脚和右手、右脚是不一样的,右手戴左手套、右脚穿左鞋都会极其别扭和难受。
■ 即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。下图中,树1和树2是同一棵树,但它们却是不同的二叉树。就好像你一不小心,摔伤了手,伤的是左手还是右手,对你的生活影响度是完全不同的。
二叉树具有五种基本形态:
1.空二叉树。
2.只有一个根结点。
3.根结点只有左子树。
4.根结点只有右子树。
5.根结点既有左子树又有右子树。
应该说这五种形态还是比较好理解的,那我现在问大家,如果是有三个结点的树,有几种形态?如果是有三个结点的二叉树,考虑一下,又有几种形态?
若只从形态上考虑,三个结点的树只有两种情况,那就是下图中有两层的树1和有三层的后四种的任意一种,但对于二叉树来说,由于要区分左右,所以就演变成五种形态,树2、树3、树4和树5分别代表不同的二叉树。
5.3 特殊二叉树
我们再来介绍一些特殊的二叉树。这些树可能暂时你不能理解它有什么用处,但先了解一下,以后会提到它们的实际用途。
1.斜树
顾名思义,斜树一定要是斜的,但是往哪斜还是有讲究。所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。
有人会想,这也能叫树呀,与我们的线性表结构不是一样吗。对的,其实线性表结构就可以理解为是树的一种极其特殊的表现形式。
2.满二叉树
在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
单是每个结点都存在左右子树,不能算是满二叉树,还必须要所有的叶子都在同一层上,这就做到了整棵树的平衡。因此,满二叉树的特点有:
(1)叶子只能出现在最下一层。出现在其他层就不可能达成平衡。
(2)非叶子结点的度一定是2。否则就是“缺胳膊少腿”了。
(3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。
3. 完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树,如下图。
这是一种有些理解难度的特殊二叉树。
首先从字面上要区分,“完全”和“满”的差异,满二叉树一定是一棵完全二叉树,但完全二叉树不一定是满的。
其次,完全二叉树的所有结点与同样深度的满二叉树,它们按层序编号相同的结点,是一一对应的。这里有个关键词是按层序编号,像下图中的树1,因为5结点没有左子树,却有右子树,那就使得按层序编号的第10个编号空档了。同样道理,下图中的树2,由于3结点没有子树,所以使得6、7编号的位置空档了。下图中的树3又是因为5编号下没有子树造成第10和第11位置空档。只有上图中的树,尽管它不是满二叉树,但是编号是连续的,所以它是完全二叉树。
从这里我也可以得出一些完全二叉树的特点:
(1)叶子结点只能出现在最下两层。
(2)最下层的叶子一定集中在左部连续位置。
(3)倒数二层,若有叶子结点,一定都在右部连续位置。
(4)如果结点度为1,则该结点只有左孩子,即不存在只有右子树的情况。
(5)同样结点数的二叉树,完全二叉树的深度最小。
从上面的例子,也给了我们一个判断某二叉树是否是完全二叉树的办法,那就是看着树的示意图,心中默默给每个结点按照满二叉树的结构逐层顺序编号,如果编号出现空档,就说明不是完全二叉树,否则就是。
5.4 二叉树的性质
二叉树有一些需要理解并记住的特性,以便于我们更好地使用它。
a 性质1
性质1:在二叉树的第i层上至多有2i-1个结点(i≥1)。
这个性质很好记忆,观察一下下图。
通过数据归纳法的论证,可以很容易得出在二叉树的第i层上至多有2^(i-1)个结点(i≥1)的结论。
b 性质2
二叉树性质2:深度为k的二叉树至多有2^k-1个结点(k≥1)。
深度为k意思就是有k层的二叉树,我们先来看看简单的。
通过数据归纳法的论证,可以得出,如果有k层,此二叉树至多有2^k-1个结点。
c 性质3
性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
终端结点数其实就是叶子结点数,而一棵二叉树,除了叶子结点外,剩下的就是度为1或2的结点数了,我们设n1为度是1的结点数。则树T结点总数n=n0+n1+n2。
比如下图的例子,结点总数为10,它是由A、B、C、D等度为2结点,F、G、H、I、J等度为0的叶子结点和E这个度为1的结点组成。总和为4+1+5=10。
我们换个角度,再数一数它的连接线数,由于根结点只有分支出去,没有分支进入,所以分支线总数为结点总数减去1。上图就是9个分支。对于A、B、C、D结点来说,它们都有两个分支线出去,而E结点只有一个分支线出去。所以总分支线为4×2+1×1=9。
用代数表达就是分支线总数=n-1=n1+2n2。因为刚才我们有等式n=n0+n1+n2,所以可推导出n0+n1+n2-1=n1+2n2。结论就是n0=n2+1。
d 性质4
性质4:具有n个结点的完全二叉树的深度为⌊log2n⌋+1(⌊x⌋表示不大于x的最大整数)。
由满二叉树的定义我们可以知道,深度为k的满二叉树的结点数n一定是2k-1。因为这是最多的结点个数。那么对于n=2k-1倒推得到满二叉树的度数为k=log2(n+1),比如结点数为15的满二叉树,度为4。
完全二叉树我们前面已经提到,它是一棵具有n个结点的二叉树,若按层序编号后其编号与同样深度的满二叉树中编号结点在二叉树中位置完全相同,那它就是完全二叉树。也就是说,它的叶子结点只会出现在最下面的两层。
它的结点数一定少于等于同样度数的满二叉树的结点数2^k-1,但一定多于2^(k-1)-1。即满足2^(k-1)-1<n≤2^k-1。由于结点数n是整数,n≤2^k-1意味着n<2^k,n>2^(k-1)-1,意味着n≥2^(k-1),所以2^(k-1)≤n<2^k,不等式两边取对数,得到k-1≤log2n<k,而k作为度数也是整数,因此k=⌊log2n⌋+1。
e 性质5
性质5:如果对一棵有n个结点的完全二叉树(其深度为⌊log2n⌋+1)的结点按层序编号(从第1层到第⌊log2n⌋+1层,每层从左到右),对任一结点i(1≤i≤n)有:
1.如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点⌊i/2⌋。
2.如果2i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2i。
3.如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+1。
我们以下图为例,来理解这个性质。这是一个完全二叉树,度为4,结点总数是10。
对于第一条来说是很显然的,i=1时就是根结点。i>1时,比如结点7,它的双亲就是⌊7/2⌋=3,结点9,它的双亲就是⌊9/2⌋=4。
第二条,比如结点6,因为2×6=12超过了结点总数10,所以结点6无左孩子,它是叶子结点。同样,而结点5,因为2×5=10正好是结点总数10,所以它的左孩子是结点10。
第三条,比如结点5,因为2×5+1=11,大于结点总数10,所以它无右孩子。而结点3,因为2×3+1=7小于10,所以它的右孩子是结点7。
6. 二叉树的存储结构
6.1 二叉树顺序存储结构
前面我们已经谈到了树的存储结构,并且谈到顺序存储对树这种一对多的关系结构实现起来是比较困难的。但是二叉树是一种特殊的树,由于它的特殊性,使得用顺序存储结构也可以实现。
二叉树的顺序存储结构就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标要能体现结点之间的逻辑关系,比如双亲与孩子的关系,左右兄弟的关系等。
先来看看完全二叉树的顺序存储,一棵完全二叉树如下图所示。
将这棵二叉树存入到数组中,相应的下标对应其同样的位置,如下图所示。
这下看出完全二叉树的优越性来了吧。由于它定义的严格,所以用顺序结构也可以表现出二叉树的结构来。
当然对于一般的二叉树,尽管层序编号不能反映逻辑关系,但是可以将其按完全二叉树编号,只不过,把不存在的结点设置为“∧”而已。如下图,注意浅色结点表示不存在。
考虑一种极端的情况,一棵深度为k的右斜树,它只有k个结点,却需要分配2k-1个存储单元空间,这显然是对存储空间的浪费,例如下图所示。所以,顺序存储结构一般只用于完全二叉树。
6.2 二叉链表
既然顺序存储适用性不强,我们就要考虑链式存储结构。二叉树每个结点最多有两个孩子,所以为它设计一个数据域和两个指针域是比较自然的想法,我们称这样的链表叫做二叉链表。结点结构图如下表所示。
其中data是数据域,lchild和rchild都是指针域,分别存放指向左孩子和右孩子的指针。
以下是我们的二叉链表的结点结构定义代码。
结构示意图如下图所示。
就如同树的存储结构中讨论的一样,如果有需要,还可以再增加一个指向其双亲的指针域,那样就称之为三叉链表。由于与树的存储结构类似,这里就不详述了。
7. 遍历二叉树
7.1 二叉树遍历原理
假设,我手头有20张100元的和2000张1元的奖券,同时洒向了空中,大家比赛看谁最终捡的最多。如果是你,你会怎么做?
相信所有同学都会说,一定先捡100元的。道理非常简单,因为捡一张100元等于1元的捡100张,效率好得不是一点点。所以可以得到这样的结论,同样是捡奖券,在有限时间内,要达到最高效率,次序非常重要。对于二叉树的遍历来讲,次序同样显得很重要。
二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。
这里有两个关键词:访问和次序。
访问其实是要根据实际的需要来确定具体做什么,比如对每个结点进行相关计算,输出打印等,它算作是一个抽象操作。在这里我们可以简单地假定就是输出结点的数据信息。
二叉树的遍历次序不同于线性结构,最多也就是从头至尾、循环、双向等简单的遍历方式。树的结点之间不存在唯一的前驱和后继关系,在访问一个结点后,下一个被访问的结点面临着不同的选择。就像你人生的道路上,高考填志愿要面临哪个城市、哪所大学、具体专业等选择,由于选择方式的不同,遍历的次序就完全不同了。
7.2 二叉树遍历方法
二叉树的遍历方式可以很多,如果我们限制了从左到右的习惯方式,那么主要就分为四种:
1.前序遍历
规则是若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。如下图所示,遍历的顺序为:ABDGHCEIF。
2.中序遍历
规则是若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结点),中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树。如下图所示,遍历的顺序为:GDHBAEICF。
3.后序遍历
规则是若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点。如下图所示,遍历的顺序为:GHDBIEFCA。
4.层序遍历
规则是若树为空,则空操作返回,否则从树的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。如下图所示,遍历的顺序为:ABCDEFGHI。
有同学会说,研究这么多遍历的方法干什么呢?
我们用图形的方式来表现树的结构,应该说是非常直观和容易理解,但是对于计算机来说,它只有循环、判断等方式来处理,也就是说,它只会处理线性序列,而我们刚才提到的四种遍历方法,其实都是在把树中的结点变成某种意义的线性序列,这就给程序的实现带来了好处。
另外不同的遍历提供了对结点依次处理的不同方式,可以在遍历过程中对结点进行各种处理。