频带信号的发送和接收在通信系统模型中的位置如下图所示。
基带信号通过调制转换成频带信号。调制的基本思路就是发送端产生高频载波信号,让高频载波的幅度、频率或相位随着调制信号变化,接收端收到后,从中将调制信号恢复出来。根据要调制的信号是模拟信号还是数字信号,调制分为:模拟调制和数字调制。
1. 模拟调制
模拟调制是指要调制的信号是模拟信号。
模拟调制一般分为三种:幅度调制、频率调制和相位调制。
幅度调制:用模拟信号去控制高频载波的幅度,又被称为调幅。
频率调制:用模拟信号去控制高频载波的频率,又被称为调频。
相位调制:用模拟信号去控制高频载波的相位,又被称为调相。
在移动通信系统中用的比较多的是调幅,因此重点讲解调幅。
1.1 标准幅度调制
幅度调制的基本思路是:用低频电信号去控制高频无线电信号的幅度,也就是在发送端让高频无线电信号的幅度随着低频电信号变化,到了接收端将高频无线电信号的幅度变化信息提取出来就可以恢复低频电信号。
幅度调制也分多种,标准幅度调制在无线电广播中用得比较多,先从标准幅度调制讲起。
以下图所示低频电信号调制到高频载波上为例,来看一下什么是标准幅度调制。
假定高频载波为100kHz的余弦信号,如下图所示。
注:一般高频载波的频率都比这个高很多,这里为了看清楚相关波形,特意选取了100kHz的频率。
高频载波的幅度随低频电信号来变化,已调高频电信号的波形如下图所示。
如何才能得到这样的高频已调信号呢?直接将低频电信号与高频载波信号相乘即可。
但是有一个前提条件,那就是:低频电信号的幅值必须恒大于零,否则高频载波信号的幅度不会完全按照低频电信号来变化。
下面看一个低频电信号不符合上述条件的例子。还是以10kHz单音信号为例,注意这个信号的幅度变化范围为-1~+1,如下图所示。
这个单音信号直接与高频载波相乘,得到已调高频信号波形如下图所示。
显然,这并不是我们期望看到的波形。有没有什么办法可以解决这个问题呢?答案是:有。方法很简单:将低频电信号f(t)的电平抬高A0,使得f(t)+A0恒大于零,再与高频载波相乘,这样就可以得到我们所期望的已调信号波形。这就是标准幅度调制。
a 调制原理
调制信号:f(t);
载波信号:cosωct;
已调信号:s(t)=[f(t)+A0]cosωct,其中:A0>|f(t)|。
已调信号:s(t)=[f(t)+A0]cosωct,其中:A0>| f(t)|.& nbsp;你好
b 解调原理
调制的方法已经有了,如何解调呢?利用二极管的单向导通性和电容的高频旁路和隔直特性就可以实现解调,如下图所示。
第一步:利用二极管的单向导通性对信号进行处理,得到的信号波形如下图所示。
c 频谱分析
标准调幅信号:s(t)=[f(t)+A0]cosωct
假定调制信号f(t)的频谱如下图所示。
余弦信号的频谱如图所示
已调信号的频谱如图所示。
d 调制效率
标准幅度调制和解调的实现都很简单,但是其调制效率很低。s(t)=[f(t)+A0]cosωct=f(t)cosωct+A0cosω0t
由这个表达式可以看出:只有前面部分f(t)cosωct承载了有用信息f(t),后面部分A0cosωct并没承载有用信息。
由于A0>|f(t)|,标准幅度调制的效率低于50%。
标准幅度调制由于接收机方案非常简单、成本低,因此被广泛应用于无线电广播中。但因其调制效率太低,在双向无线电通信中很少采用。
既然标准幅度调制因为发射了没有携带信息的空载波而导致调制效率低,那很容易想到:能不能不发送这个空载波呢?但如果不发送这个空载波,接收端能将信号解调出来吗?这就引出了双边带调制。
1.2 双边带调制
a 调制原理
调制信号:f(t);
载波信号:cosωct;
已调信号:f(t)cosωct。
下面还以10kHz的单音信号为例,看看双边带调制的相关信号波形。将10Hz的正弦信号调制到100Hz高频载波上。调制的输入信号、载波信号、输出已调信号的波形如下图所示。
b 解调原理
接收端如何将调制信号解调出来呢?如果仍旧采用包络检波方法解调,信号会发生严重失真,如下图所示。
很明显不能再用包络检波方法进行解调,那用什么方法进行解调呢?答案是:相干解调。相干解调的具体方法是:在接收端提取同步信息,产生一个与高频载波信号同频同相的本地载波,与接收信号相乘,再通过低通滤波,即可恢复出调制信号。
解调原理如下:
因为cos2ωct的频率远远高于f(t),所以可以利用低通滤波器LPF将f(t)恢复出来。
c 频谱分析
为了加深对双边带调制和解调的理解,对其做一下频谱分析。
低通滤波后即可得到f(t)的频谱,从中恢复出f(t)。
一般将双边带调制信号频谱中|f|>fc部分称为上边带(Upper Si de Band),|f|<fc部分称为下边带(Lower Side Band),如下图所示。
双边带调制信号频谱中上边带和下边带部分携带的信息是相同的。
为什么这么讲呢?
上边带的正频率部分是基带频谱的正频率部分向右搬移得到的,其负频率部分是基带频谱的负频率部分向左搬移得到的,如下图所示。
下边带的正频率部分是基带频谱的负频率部分向右搬移得到的,其负频率部分是基带频谱的正频率部分向左搬移得到的,如下图所示。
很显然,上边带和下边带都来源于基带频谱,各自携带了基带信号的全部信息。
1.3 单边带调制
既然上边带和下边带携带了相同的信息,应该只发送其中一个边带就可以了,这样可以节省一半带宽,由此引出了单边带调制。
a 调制原理
根据前面的描述,很容易画出单边带调制的原理框图,只要在双边带调制的基础上,用理想低通滤波器截取下边带或用理想高通滤波器截取上边带即可。用理想低通滤波器截取下边带信号发射出去,这就是下边带调制,如下图所示。
用理想高通滤波器截取上边带信号发射出去,这就是上边带调制,如下图所示。
b 解调原理
解调与双边带调制一样,也是采用相干解调:在接收端提取同步信息,产生一个与高频载波信号同频同相的本地载波,与接收信号相乘,再通过低通滤波,即可恢复出原来的信号,如下图所示。
c 频谱分析
根据“时域相乘相当于频域卷积”,可得下边带信号与余弦信号相乘所得信号sLSBcosωct的频谱,如下图所示。
很明显,只要低通滤波即可得到调制信号的频谱,恢复出f(t)。
上边带信号的相干解调也是同理,大家可以尝试自己画出他们的频谱图 ,我这里就不再重复了
1.4 IQ调制
前面讲的双边带调制和单边带调制都是利用一路载波来传输一路信号。
如果采用两路载波,一路载波为cosωct,另外一路载波为-sinωct,则可以同时并行传输两路信号。这就是IQ调制,又叫正交调制。 一
a 调制原理
调制信号:x(t)、y(t)
载波信号:cosωct、-sinωct
已调信号:s(t)=x(t)cosωct-y(t)sinωct
b 解调原理
IQ调制的解调方法与幅度调制类似,如下图所示。
解调原理如下:
很明显,通过低通滤波就可以将调制信号x(t)、y(t)恢复出来。