散点拟合曲线方程，并求点到曲线的最小距离

1、通过散点拟合出曲线方程并绘制出图形：

#coding=utf-8

import matplotlib.pyplot as plt
import numpy as np

x = [-1675, -1662, -1648, -1632, -1616, -1602, -1590, -1579, -1567, -1556, -1545, -1534, -1525, -1515, -1506, -1496, -1485, -1473, -1462, -1450, -1439, -1428, -1417, -1405, -1399, -1389, -1379]
y = [-3902, -3865, -3825, -3776, -3724, -3673, -3629, -3583, -3532, -3484, -3428, -3375, -3326, -3269, -3221, -3167, -3114, -3050, -2990, -2927, -2868, -2808, -2750, -2684, -2653, -2600, -2547]
z1 = np.polyfit(x, y, 4) #用4次多项式拟合，输出系数从高到0
#print(z1)
p1 = np.poly1d(z1) #使用次数合成多项式
y_pre = p1(x)

plt.plot(x,y,'.')
plt.plot(x,y_pre)
plt.show()

2、求点到拟合曲线的最小距离并绘图显示

#coding=utf-8

import numpy as np
import matplotlib.pyplot as plt

x = [-1675, -1662, -1648, -1632, -1616, -1602, -1590, -1579, -1567, -1556, -1545, -1534, -1525,
-1515, -1506, -1496, -1485, -1473, -1462, -1450, -1439, -1428, -1417, -1405, -1399, -1389, -1379]
y = [-3902, -3865, -3825, -3776, -3724, -3673, -3629, -3583, -3532, -3484, -3428, -3375, -3326,
-3269, -3221, -3167, -3114, -3050, -2990, -2927, -2868, -2808, -2750, -2684, -2653, -2600, -2547]
z1 = np.polyfit(x, y, 4) #用4次多项式拟合，输出系数从高到0
p1 = np.poly1d(z1) #使用次数合成多项式

def distance(x, y, x0, y0):
"""
Return distance between point
P[x0,y0] and a curve (x,y)
"""
d_x = x - x0
d_y = y - y0
dis = np.sqrt( d_x**2 + d_y**2 )
return dis

def min_distance(x, y, P, precision=5):
"""
Compute minimum/a distance/s between
a point P[x0,y0] and a curve (x,y)
rounded at precision.

ARGS:
x, y      (array)
P         (tuple)
precision (int)

Returns min indexes and distances array.
"""
# compute distance
d = distance(x, y, P[0], P[1])
d = np.round(d, precision)
# find the minima
glob_min_idxs = np.argwhere(d==np.min(d)).ravel()
return glob_min_idxs, d

def f(x):
return p1(x)

x = np.linspace(-1700, -1200, 1000)
y = f(x)

P = (-1662, -3848)

min_idxs, dis = min_distance(x, y, P)

fig, ax = plt.subplots(figsize=(7, 7))

ax.plot(x, y, lw=4)
for idx in min_idxs:
ax.plot(
[P[0], x[idx]],
[P[1], y[idx]],
'--', lw=1,
label=f'distance {dis[idx]:.2f}'
)
ax.plot(*P, 'or')
ax.text(
P[0], P[1],
f"  P ({P[0]}, {P[1]})",
ha='left', va='center',
fontsize=15
)
ax.set(
xlim=(-1700, -1200),
ylim=(-4000, -2400),
)
ax.legend()
plt.show()



3、返回点到拟合曲线的最小距离值

#coding=utf-8

import numpy as np
import matplotlib.pyplot as plt

x = [-1675, -1662, -1648, -1632, -1616, -1602, -1590, -1579, -1567, -1556, -1545, -1534,
-1525, -1515, -1506, -1496, -1485, -1473, -1462, -1450, -1439, -1428, -1417, -1405, -1399, -1389, -1379]
y = [-3902, -3865, -3825, -3776, -3724, -3673, -3629, -3583, -3532, -3484, -3428, -3375,
-3326, -3269, -3221, -3167, -3114, -3050, -2990, -2927, -2868, -2808, -2750, -2684, -2653, -2600, -2547]
z1 = np.polyfit(x, y, 4) #用4次多项式拟合，输出系数从高到0
f1 = np.poly1d(z1) #使用次数合成多项式

def distance(x, y, x0, y0):
"""
Return distance between point
P[x0,y0] and a curve (x,y)
"""
d_x = x - x0
d_y = y - y0
dis = np.sqrt( d_x**2 + d_y**2 )
return dis

def min_distance(x, y, P, precision=5):
"""
Compute minimum/a distance/s between
a point P[x0,y0] and a curve (x,y)
rounded at precision.

ARGS:
x, y      (array)
P         (tuple)
precision (int)

Returns min indexes and distances array.
"""
# compute distance
d = distance(x, y, P[0], P[1])
d = np.round(d, precision)
# find the minima
glob_min_idxs = np.argwhere(d==np.min(d)).ravel()
return glob_min_idxs, d

def f1_min_distance(P):
x = np.linspace(-1700, -1200, 1000)
y = f1(x)

min_idxs, dis = min_distance(x, y, P)
return min(dis)

if __name__ == '__main__':
P = (-1662, -3848)
d = f1_min_distance(P)
print(d)

• 1
点赞
• 6
收藏
• 打赏
• 2
评论
02-02 447
05-27 1万+
10-04 1658
12-15 541
09-05 7652
07-17 2646
01-07 3502

“相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

wisteri

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。