【定义】
拓扑排序应用于有向无环图之中,排序完以后会出现这样的性质:对于一个点p,只对排序位置在它之后的点有边。如果有环,则环上的点以及环上点所能到达的点都不会被放进拓扑序列中。
举例来说,如果我们将一系列需要运行的任务构成一个有向图,图中的有向边则代表某一任务必须在另一个任务之前完成这一限制。那么运用拓扑排序,我们就能得到满足执行顺序限制条件的一系列任务所需执行的先后顺序。当然也有可能图中并不存在这样一个拓扑顺序,这种情况下我们无法根据给定要求完成这一系列任务,这种情况称为循环依赖(circular dependency)。
【步骤】
- 初始化一个int[] inDegree保存每一个结点的入度。
- 对于图中的每一个结点的子结点,将其子结点的入度加1。
- 选取入度为0的结点开始遍历,并将该节点加入输出。
- 对于遍历过的每个结点,更新其子结点的入度:将子结点的入度减1。
- 重复步骤3,直到遍历完所有的结点。
如果无法遍历完所有的结点,则意味着当前的图不是有向无环图。不存在拓扑排序。
【CODE】
#include<bits/stdc++.h>
using namespace std;
int n,m,x,y,d[100100],s,used[100100],top[100100],tkey;
queue<int> q;
vector<int> G[100100];
void topsort(int x)
{
q.push(x);
top[++tkey]=x;
used[x]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for (int i=0;i<G[u].size();i++)
{
d[G[u][i]]--;
if (!d[G[u][i]])
{
q.push(G[u][i]);
top[++tkey]=G[u][i];
}
}
}
}
int main()
{
memset(d,0,sizeof(d));
cin>>n>>m;
for (int i=1;i<=m;i++)
{
cin>>x>>y;
G[x].push_back(y);
d[y]++;
}
for (int i=1;i<=n;i++)
if (!d[i])
{
s=i;
break;
}
topsort(s);
if (tkey==n)
cout<<"Yes\n";
else cout<<"No\n";
for (int i=1;i<=n;i++)
cout<<top[i]<<" ";
return 0;
}