数论入门之欧拉函数

本文介绍了欧拉函数的基本概念,定义为1到n中与n互质的数的个数,并通过分解质因数的方法阐述了计算欧拉函数的公式。接着,详细讨论了欧拉函数的8个关键性质,包括当n为质数时的特殊情况以及与其他数的乘积关系。这些性质有助于理解和应用欧拉函数。
摘要由CSDN通过智能技术生成

欧拉函数

欧拉函数的定义

1 ⋯ n 1\cdots n 1n 中与 n n n 互质的数的个数被称为欧拉函数,记为 φ ( n ) \varphi(n) φ(n)
当我们把 N N N 看作 N = p 1 c 1 × p 2 c 2 × p 3 c 3 × p 4 c 4 × ⋯ × p m c m N=p_1^{c_1}\times p_2^{c_2}\times p_3^{c_3}\times p_4^{c_4}\times \cdots \times p_m^{c_m} N=p1c1×p2c2×p3c3×p4c4××pmcm 的形式
我们发现对于 N N N 的一个因数 p p p,与 N N N 不互质的数为 p , 2 p , 3 p , ⋯   , k p p,2p,3p,\cdots,kp p,2p,3p,,kp,也就是有 k k k 个数不与 N N N 互质,很显然 k = N p k=\frac{N}{p} k=pN,当我们再加入 N N N 的一个因子 q q q,在 N N N 的范围内与 N N N 的两个因子都互质的数的个数即为
N = N − N p − N q + N p q = N × ( 1 − 1 p − 1 q − 1 p q ) = N × ( 1 − 1 p ) × ( 1 − 1 q ) N=N-\frac{N}{p}-\frac{N}{q}+\frac{N}{pq}=N\times(1-\frac{1}{p}-\frac{1}{q}-\frac{1}{pq})=N\times(1-\frac{1}{p})\times(1-\frac{1}{q}) N=NpNqN+pqN=N×(1p1q1pq1)=N×(1p1)×(1q1)
N N N 的因子数为 p 1 , p 2 , p 3 , ⋯   , p m p_1,p_2,p_3,\cdots,p_m p1,p2,p3,,pm 时,
φ ( N ) = N × ( 1 − 1 p 1 ) × ( 1 − 1 p 2 ) × ( 1 − 1 p 3 ) × ⋯ × ( 1 − 1 p m ) = N × ∏ i = 1 m ( 1 − 1 p i ) \varphi(N)=N\times(1-\frac{1}{p_1})\times(1-\frac{1}{p_2})\times(1-\frac{1}{p_3})\times \cdots \times(1-\frac{1}{p_m})=N\times\prod_{i=1}^{m}(1-\frac{1}{p_i}) φ(N)=N×(1p1<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值