【C++】找最大公约数、找最小公倍数(分数的通分、约分)、素数、合数、公因数

13 篇文章 0 订阅

找最大公约数、找最小公倍数(分数的通分、约分)

C++如何找最大公约数(约分)(最大公因数)

【定义】两个数的最大公约数是能够被两个数整除的最大正整数。
常采用辗转相除法(欧几里得算法),公式为:gcd(a,b)=gcd(b,a mod b)
其实现代码如下:

int gcd(int a, int b)
{
	if(b==0) return a;
	return gcd(b, a%b);
}

但,其实C++11的标准库numeric含有现成的gcd函数,可以直接用它来找gcd(a,b)

C++如何找最小公倍数(通分)

最小公倍数 = 两数之积除以最大公约数,而最大公约数由上面的方法可得。而找一堆数的最小公倍数,递进下去即可:

//假设求nums数组内所有数的最小公倍数
int ans = 1;//毕竟分数,要从1开始
for(int i=0; i<nums.size(); i++)
{
	ans = ans*nums[i] / (gcd(ans, nums[i]));
}
return ans;

应用-找连续区间内的最大公因数

在这里插入图片描述
其实只需要记住: g c d ( n u m s [ l : r + 1 ] ) = g c d ( n u m s [ l : r ] , n u m s [ r + 1 ] ) gcd(nums[l:r+1])=gcd(nums[l:r],nums[r+1]) gcd(nums[l:r+1])=gcd(nums[l:r],nums[r+1]),也就是说不断对新的增加的数求公因数即可。例如:当数组中只有927时,最大公因数为9,但是此时再加入个6,那么最大公因数就恢复成3了。因此需要一直求下去。但有一种情况除外,就是新加入的数连公因数k都没有,那么后面也一定不会再有k了

class Solution {
public:
    int subarrayGCD(vector<int>& nums, int k) {
        int n = nums.size(),ans = 0;
        for(auto &num: nums) if(num == k) ++ans;
        for(int i = 0; i < n; ++i) {
            if(nums[i] % k == 0) {
                int x = nums[i];
                for(int j = i + 1; j < n; ++j) {
                    x = gcd(x, nums[j]);
                    if(x == k) ++ans;
                    //但是如果新的数连公因数k都没有,那么一定不可能再有k了
                    else if(x % k) break;
                }
            }
        }
        return ans;
    }
};

应用-分数加减算法

在这里插入图片描述
这个题其实就是直接的分数操作,其思路也很明确:先把分子和分母提出来,分母通分的同时改好分母的值,随后分子相加完,再将分子分母约分即可,下面可见代码详解:

class Solution {
public:
    string fractionAddition(string expression) {
    vector<int>son,mom;
    int sign = 1;//记录符号
    int start = 0, n = expression.size();
    //分子分母都抽出来
    for(int i=0; i<n; ++i)
    {
        if(expression[i]=='-'||expression[i]=='+')
        {
            if(expression[i]=='-') sign = -1;
            else sign = 1;
            start = i+1;
        }
        //读分子
        while(expression[i] != '/') i++;
        int tem = sign * stoi(expression.substr(start,i-start));
        son.push_back(tem);
        start = i+1;
        //读分母
        while(i+1<n && isdigit(expression[i+1])) i++;
        tem = stoi(expression.substr(start,i+1-start));
        mom.push_back(tem);
    }
    //通分
    int mom_v=1;
    for(int i=0;i<mom.size();i++)
    {
        mom_v = (mom_v * mom[i]) / (gcd(mom_v,mom[i]));
    }
    for(int i=0;i<son.size();i++)
    {
        int tem = mom_v/mom[i];
        son[i] *= tem;
    }
    //分子之间作加法
    int son_v = 0; 
    for(auto &num:son)
    {
        son_v += num;
    }
    //约分
    int yufen = gcd(son_v,mom_v);
    string son_s = to_string(son_v /= yufen);
    string mom_s = to_string(mom_v /= yufen);
    return {son_s+'/'+mom_s};
    }
};

素数、合数、公因数

素数和合数的定义

特别地,0,1既不是质数也不是合数
【定义1】素数又称质数。所谓素数是指除了 1 和它本身以外,不能被任何整数整除的数,例如17就是素数,因为它不能被 2~16 的任一整数整除。
【定义2】除了0和1,不是素数的就是合数。一个合数一定由质数构成。
因此,单个判断是否是素数可以用试探法
i从2枚举到n-1,如果n能被i整除,则为合数;如果都不能被i整除,则为质数;
如果n为合数,因子会成对出现,记为(x1, x2),则必有 x 1 < = n x1<=\sqrt{n} x1<=n x 2 > = n x2>=\sqrt{n} x2>=n ,因此我们再枚举i的时候,只需要枚举到 n \sqrt{n} n 即可。

bool is_prime(int n)
{
	if(n<2) return false;
	else
	{
	//注意这里判断条件的巧妙之处
	//原式需要i<sqrt(n)但是每次开方的计算量大
	//而通过两面同时平方--i*i<=n 有爆int风险
	//因此这里直接采用i<=n/i
		for(int i=2;i<=n/i;i++)
			if(n%i==0) return false;
	}
	return true;
}
//时间复杂度sqrt(n)

1、寻找范围内的区间素数之埃氏筛

因为一个合数一定由质数构成,因此我们通过把区间内所有合数删掉来到达快速找到素数的目的。例如:
假定我们要求100以内的质数,我们从2开始遍历。
遍历到2,2是质数,于是我们把2的所有倍数全部删除,比如4、6、8、10…
遍历到3,3是质数,于是我们把3的所有倍数全都删除,比如6、9、12、15…
遍历到4,4是合数已经删除,继续遍历,以此类推即可找到范围内所有的素数
代码如下所示:

  void erichsen() {
        int n = 100;
        //是否是质数,1-质数 0-合数
        vector<bool> isPrime;
        isPrime.resize(n,true);
        //因为对待质数主要是删除质数基础上的合数,因此后面的不必再去删除
        //采用i < n / i 防止i*i超范围
        for (int i = 2; i < n / i; i++) {
            if (isPrime[i]) {
                //删除i的倍数
                for (int j = i * i; j < n; j += i) {
                    isPrime[j] = false;
                }
            }
        }
        int count = 0;
        for (int i = 2; i < n; i++) {
            if (isPrime[i]) {
                count++;
            }
        }
        cout << count << endl;
    }

时间复杂度:O(nloglogn)

2、寻找范围内的区间素数之欧氏筛

欧拉筛是埃氏筛的改进版本,由于某些合数会有很多质因数,因此在删除的过程中会重复的删除,比如30,遍历到2时会进行删除,遍历到3时也会进行删除,所以为了避免这样的开销,欧拉筛将筛选出来的质数进行记录,在删除的过程中,只通过数的最小质因数筛数

void euler() {
        int n = 1e5;
        //判断是否是质数
        vector<bool> isPrime(n,true);
        //存放质数
        vector<int> primes;
        int count = 0;
        for (int i = 2; i < n; i++) 
        {
        //1、先记录下来有哪些质数
            if (isPrime[i]) 
            {
                primes.push_back(i);
                count++;
            }
        //2、对每个数,都找其最小质数,去掉最近的数
        //primes[j] * i就是找到的合数,其大小应该小于范围n
            for (int j = 0; primes[j] * i < n; j++) 
            {
                //每个质数都和i相乘 得到合数,删掉他们
                isPrime[primes[j] * i] = false;
                //primes[j]是i的一个质因数,保证是最小质因数
                if (i % primes[j] == 0) break;
            }
        }
        cout<< count <<endl;
    }

9592
将其内部作为表打出来:

 当i = 2#j = 0    primes[j] =    2     primes[j] * i =    4
 当i = 3#j = 0    primes[j] =    2     primes[j] * i =    6
 #j = 1    primes[j] =    3     primes[j] * i =    9
 当i = 4#j = 0    primes[j] =    2     primes[j] * i =    8
 当i = 5#j = 0    primes[j] =    2     primes[j] * i =    10
 #j = 1    primes[j] =    3     primes[j] * i =    15
 #j = 2    primes[j] =    5     primes[j] * i =    25
 当i = 6#j = 0    primes[j] =    2     primes[j] * i =    12
 当i = 7#j = 0    primes[j] =    2     primes[j] * i =    14
 #j = 1    primes[j] =    3     primes[j] * i =    21
 #j = 2    primes[j] =    5     primes[j] * i =    35
 #j = 3    primes[j] =    7     primes[j] * i =    49
 当i = 8#j = 0    primes[j] =    2     primes[j] * i =    16
 当i = 9#j = 0    primes[j] =    2     primes[j] * i =    18
 #j = 1    primes[j] =    3     primes[j] * i =    27
 当i = 10#j = 0    primes[j] =    2     primes[j] * i =    20

应用-按公因数计算最大组件大小

在这里插入图片描述
这个题很明显就是用查并集来做,关键是如何判断他们之间是存在有公因式的。我用最简单的gcd来找公因数,直接就TLE,因此需要另找个好方法来找公因式:
gcd是每两个数两两比较,因此是 n 2 n^2 n2的复杂度。而我们知道合数都是有质数构成的,我们可以通过直接让num与构成其的所有质数相连,从而达到一次遍历就完成的效果。随后可以通过清点每个数组的父节点来找到最多的那个父节点,输出有多少个指向它就行了。

class Solution {
public:
    vector<int>parents;
    vector<int>rank;
    int max_rank = 0;
    int largestComponentSize(vector<int>& nums) {
        const int N = *max_element(nums.begin(),nums.end())+7;
        parents.resize(N);
        rank.resize(N);
        //1、查并集初始化
        for(int i=0; i<N; i++) parents[i] = i;
        //2、完成素数筛选
        vector<bool>is_prim(N,true);
        vector<int>prim;
        for(int i=2;i<N;i++)
        {
            if(is_prim[i]) prim.push_back(i);
            for(int j=0;prim[j]*i<N;j++)
            {
                is_prim[prim[j]*i] = false;
                if(i%prim[j]==0) break;
            }
        }
        //3、遍历所有数,使其与自己的所有质因数连起来
        for(auto &num:nums)
        {
            int tem = num;
            int n = prim.size();
            //这里的prim[j]*prim[j]<=tem原因是找构成的质数只需要找根号n范围的
            //原因看上面的解释
            for(int j=0;j<n && prim[j]*prim[j]<=tem;j++)
            {
            //这里找到构成他的质数就连接起来,随后继续找质因数
                if(tem%prim[j]==0) link(num,prim[j]);
                while(tem%prim[j]==0) tem /= prim[j];
            }
            //这个地方就是为了补偿上面sqrt(n)的,因为最后可能tem到了一个质数的情况
            //而找质因数就肯定不会找自己嘛,因此这个判断最后一个数不是1就是另外的质数
            //即是不是为大于1的数,是的话把他们一起连起来。
            if(tem>1) link(num,tem);
        }
        //找到连接最多的点即可
        int ans = 1;
        vector<int>count(N);
        //是否属于某个根,输出有多少个指向它
        for(auto&num:nums)
        {
            ans = max(ans,++count[find(num)]);
        }
        return ans;
    }
    int find(int x)
    {
        if(x!=parents[x]) parents[x] = find(parents[x]);
        return parents[x];
    }
    void link(int x, int y)
    {
        int p_x = find(x);
        int p_y = find(y);
        if(p_x == p_y) return;
        parents[p_y] = p_x;
    }
};

引用

此处的埃氏筛和欧拉筛都参考于京城大佬的题解

  • 6
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 最大公因数是指两个或多个整数共有约数中最大的一个数,可以使用欧几里得算法(辗转相除法)来求解。 最小公倍数是指两个或多个整数公有的倍数中最小的一个数,可以通过先求出最大公因数,然后用两数之积除以最大公因数来求解。 ### 回答2: Python是一种简洁而强大的编程语言,可以轻松实现许多算法和数学操作,包括求最大公因数最小公倍数。 最大公因数(GCD)指两个或多个数的最大公约数,可以使用欧几里得算法来计算。简单来说,欧几里得算法就是反复地将两个数中较大的数除以较小的数,直到余数为0为止,此时较小的数就是它们的最大公约数。 因此,我们可以使用Python来实现欧几里得算法,例如: ``` def gcd(a, b): if b == 0: return a else: return gcd(b, a % b) ``` 这个函数接受两个参数a和b,递归地将b和a%b(即a除以b的余数)作为参数传递,直到b为0为止,此时a就是最大公约数最小公倍数(LCM)指两个或多个数的最小公倍数,可以用它们的乘积除以它们的最大公约数来计算。因此,我们可以使用gcd函数来计算最小公倍数,例如: ``` def lcm(a, b): return a * b / gcd(a, b) ``` 这个函数接受两个参数a和b,先计算最大公约数,然后将a和b的乘积除以最大公约数得到最小公倍数。 使用这些函数需要注意的是,它们的参数应该是整数,如果使用浮点数则可能导致计算错误。另外,在计算最小公倍数时,可能会产生很大的整数,超出了Python的整数表示范围,因此需要使用其他方法来处理。 ### 回答3: 最大公因数最小公倍数是数学中常见的概念,求最大公因数最小公倍数的方法有很多种,包括辗转相除法、欧几里得算法、质因数分解法等。在 Python 中,我们可以利用这些方法来求解。 一、辗转相除法 辗转相除法,也叫欧几里得算法,是求最大公因数的一种方法。这个算法的核心思想是将较大的数除以较小的数,再用余数作为被除数继续进行除法运算,直到余数为零,此时最后的被除数就是最大公因数。 以求两个数的最大公因数为例,代码如下: ```python def gcd(x, y): while y: x, y = y, x % y return x ``` 其中,`x` 和 `y` 是需要求得最大公因数的两个数。 二、质因数分解法 质因数分解法是求最小公倍数和最大公因数的一种方法。其核心思想是将每个数分解成质数乘积的形式,再将这些质数乘积中重复的部分取最大值作为最大公因数,取不重复的部分乘起来作为最小公倍数。 以求两个数的最大公因数最小公倍数为例,代码如下: ```python def prime_factors(n): i = 2 factors = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(i) if n > 1: factors.append(n) return factors def gcd(x, y): x_factors = prime_factors(x) y_factors = prime_factors(y) intersection = list(set(x_factors) & set(y_factors)) product = 1 for factor in intersection: product *= factor return product def lcm(x, y): x_factors = prime_factors(x) y_factors = prime_factors(y) union = set(x_factors) | set(y_factors) product = 1 for factor in union: product *= factor return product ``` 其中,`prime_factors` 函数是求质因数分解的函数,`gcd` 和 `lcm` 函数分别是求最大公因数最小公倍数的函数,`x` 和 `y` 是需要求得最大公因数最小公倍数的两个数。 三、小结 本文详细介绍了 Python 中求最大公因数最小公倍数的几种方法,包括辗转相除法和质因数分解法。不同的方法适用于不同的场合,需要根据具体问题进行选择。同时,Python 中有很多内置函数可以方便地完成这些计算,比如 `math.gcd` 函数可以直接求最大公因数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值