图像识别算法 | Matlab基于主成分分析和BP神经网络(PCA-BP)的手写数字识别

本文介绍了如何使用Matlab结合主成分分析(PCA)和反向传播(BP)神经网络实现手写数字识别。通过PCA进行特征降维,然后用BP神经网络进行分类,达到识别手写数字的目的。提供了主要代码段和相关参考资料。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

文章概述

图像识别算法 | Matlab基于主成分分析和BP神经网络(PCA-BP)的手写数字识别
2.其中main.m为模型主程序;运行AI_Rec.m即可显示GUI界面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值