转移概率预测 | Matlab实现马尔可夫转移概率矩阵计算

41 篇文章 244 订阅 ¥29.90 ¥99.00
24 篇文章 8 订阅 ¥299.90 ¥399.90
15 篇文章 6 订阅 ¥239.90 ¥399.90
本文介绍了马尔可夫链的概念及其性质,并展示了如何在Matlab中计算转移概率矩阵。通过实例解释了一步转移概率和稳定状态市场占有率的求解,提供了一系列相关资源作为参考。
摘要由CSDN通过智能技术生成

马尔可夫模型

马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的,时间和状态都是离散的马尔可夫过程称为马尔可夫链。

  • 马尔可夫链是满足下面两个假设的一种随机过程:
  • t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;
  • 从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:
1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值