Matlab 基于贝叶斯优化算法优化最小二乘支持向量机(BO-LSSVM)的数据分类预测 BO-LSSVM分类

该博客介绍了如何在Matlab中使用贝叶斯优化算法(BO)来优化最小二乘支持向量机(LSSVM),用于数据分类预测。提供了一个多特征输入、单输出的二分类及多分类模型,程序包括分类效果图和混淆矩阵图的生成,并确保在Matlab2023及以上版本中运行。部分源码和参考资料供读者参考。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

在这里插入图片描述

文章概述

Matlab 基于贝叶斯优化算法优化最小二乘支持向量机(BO-LSSVM)的数据分类预测 BO-LSSVM分类
直接替换数据即可使用,保证程序可正常运行。
程序语言为matlab,程序可出分类效果图,混淆矩阵图,运行环境Matlab2023及以上。

多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,混淆矩阵图。订阅专栏只能获取专栏内一份代码。

部分源码

%--
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值