锂电池SOH估计 | 基于ELM极限学习机的锂电池SOH估计(Python)

本文介绍了基于ELM(极限学习机)的锂电池状态健康(SOH)估计方法,该方法通过提取电池数据的特征,如电流和电压统计特征、频域分析等,进行训练和测试。利用训练集训练ELM模型,测试集评估性能,通过计算误差指标如RMSE和MAE。文章还提到了ELM模型的参数调整和数据质量对结果准确性的影响,并给出了Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

锂电池SOH估计 | 基于ELM极限学习机的锂电池SOH估计(Python)

估计效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

基于ELM(极限学习机)的锂电池SOH(状态健康)估计是一种常见的方法,用于评估锂电池的剩余寿命和性能衰减程度。从电池数据中提取有用的特征。例如,可以计算电流和电压的统计特征(如平均值、标准差、最大值、最小值等),或者使用频域分析方法(如快速傅里叶变换)提取频谱特征。将数据集划分为训练集和测试集。通常,大部分数据用于训练,而少量数据用于测试。ELM是一种单层前馈神经网络,具

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值