基于灰狼优化算法的快递网点选址优化

在这里插入图片描述

基于灰狼优化算法的快递网点选址优化

摘要

随着电子商务行业的蓬勃发展,快递业务量呈现出迅猛增长的态势,快递网点选址的合理性对于快递企业的运营效率、成本控制以及客户满意度提升至关重要。在此背景下,本研究采用灰狼优化算法对快递网点选址进行优化。该算法受灰狼群体捕食行为和等级制度的启发,通过构建适应度函数来评估选址方案的优劣,并利用算法的搜索机制寻求最优解。实验结果表明,灰狼优化算法在快递网点选址问题上能够有效降低成本、提高选址准确性。这不仅为快递企业提供了一种科学有效的选址方法,丰富了快递网点选址的理论体系,也对推动快递行业的可持续发展具有重要的现实意义。

关键词

快递网点选址;灰狼优化算法;适应度函数;复杂因素;算法性能

Abstract

With the rapid development of e - commerce, the volume of express delivery business has increased sharply. The location of express outlets has a crucial impact on the operational efficiency, cost, and customer satisfaction of express delivery enterprises. In this context, this research aims to optimize the location of express outlets.

The research method adopted is to use the grey wolf optimization algorithm. This algorithm is inspired by the predatory behavior and hierarchical system of grey wolves in nature. It has strong global search ability and can effectively solve complex optimization problems. By constructing an appropriate fitness function according to the goals of express outlet location, such as minimizing cost and maximizing service coverage, the grey wolf optimization algorithm is used to search for the optimal location scheme.

The application effect of the algorithm is remarkable. Through experimental analysis, it is found that the grey wolf optimization algorithm can accurately identify the optimal location of express outlets, significantly reducing the operation cost of enterprises and improving the overall service efficiency. Compared with traditional location methods, it shows obvious advantages in terms of location accuracy and cost - effectiveness.

The research significance lies in both theory and practice. Theoretically, it enriches the application of intelligent optimization algorithms in the field of express outlet location, providing a new perspective for related research. Practically, it provides an effective tool for express delivery enterprises to make scientific location decisions, helping them improve their competitiveness in the market and promoting the healthy development of the express delivery industry.

Keyword

Express outlet location; Grey wolf optimization algorithm; Fitness function; Complex factors; Algorithm performance

1. 引言
1.1 研究背景

随着互联网技术的飞速发展,电商行业呈现出蓬勃发展的态势,线上购物已成为人们日常生活的重要组成部分。电商行业的繁荣直接带动了快递业务量的急剧增长,据相关行业报告显示,近年来快递业务量以惊人的速度持续攀升[[doc_refer_3]][[doc_refer_9]]。在此背景下,快递企业的运营面临着巨大挑战,其中快递网点选址作为快递物流网络构建的关键环节,对快递企业的运营效率、成本以及客户满意度具有至关重要的影响。合理的网点选址能够有效缩短配送距离、优化配送路径,进而提高运营效率,降低运输成本;同时,便捷的网点布局还能显著提升客户的取件和寄件体验,增强客户满意度。因此,如何科学合理地选址快递网点,成为快递企业亟待解决的重要问题。

1.2 研究目的与意义

本研究旨在通过运用灰狼优化算法,对快递网点选址进行优化,从而提升快递企业的整体效益。在理论层面,通过对灰狼优化算法在快递网点选址问题中的应用研究,丰富和完善物流选址领域的理论体系,为相关理论的发展提供新的视角和思路[[doc_refer_1]][[doc_refer_2]]。在实践方面,优化后的选址方案能够帮助快递企业合理布局网点,有效降低运营成本,提高配送效率,增强企业的市场竞争力。此外,良好的网点选址还能更好地满足客户需求,提升客户服务质量,对推动快递行业的可持续发展具有重要的现实意义。

1.3 研究方法与内容

本研究采用灰狼优化算法进行快递网点选址优化。灰狼优化算法作为一种群体智能优化算法,具有较强的全局搜索能力和收敛性能,已在多个领域的优化问题中展现出良好的应用效果[[doc_refer_5]][[doc_refer_7]]。论文首先对快递网点选址相关理论及现有选址方法进行梳理和分析,明确研究的理论基础和现实背景。接着,详细阐述灰狼优化算法的原理,包括算法灵感来源、数学模型、关键参数分析以及运行机制。随后,探讨灰狼优化算法在快递网点选址中的具体应用,涵盖选址问题分析、适应度函数构建以及基于该算法的选址求解过程。通过实际案例分析,验证算法的有效性和优越性。同时,针对实际复杂因素对算法进行改进,并分析其适用性。最后,对研究成果进行总结,指出存在的不足,并对未来研究方向进行展望。

2. 文献综述
2.1 快递网点选址相关理论

快递网点选址涉及诸多基础理论,其中区位理论占据重要地位。该理论强调地理空间对经济活动的影响,认为不同地理位置具有不同的经济价值,快递网点选址应充分考虑地理区位因素,如靠近交通枢纽、商业中心等地,以降低运输成本、提高配送效率[[doc_refer_6]]。物流网络理论亦是快递网点选址的关键理论依据,其将物流系统视为一个由节点和线路组成的网络,快递网点作为网络中的重要节点,其合理布局对于整个物流网络的优化至关重要。通过构建高效的物流网络,可实现物流资源的合理配置,提升物流系统的整体效能[[doc_refer_11]]。这些理论为快递网点选址提供了理论支撑与指导方向。

2.2 快递网点选址方法研究现状

在过往研究中,重心法是一种常用的传统选址方法。该方法将需求量视为重量,通过求解重心坐标来确定最佳选址位置,其优点是计算相对简单,能快速得到一个初步的选址方案。然而,重心法仅考虑需求量与距离因素,忽略了实际地理环境的复杂性,如地形障碍、交通限制等,导致选址结果可能与实际情况存在较大偏差[[doc_refer_3]]。层次分析法则是将选址问题分解为多个层次,通过构建判断矩阵确定各因素的权重,进而综合评估选址方案的优劣。它的优势在于能综合考虑多种定性定量因素,使决策过程更加系统化、科学化。但层次分析法的主观性较强,判断矩阵的构建依赖于专家的主观判断,不同专家的意见可能导致不同的选址结果[[doc_refer_8]]。

2.3 灰狼优化算法在选址问题中的应用

灰狼优化算法作为一种新兴的智能优化算法,已在多个选址领域展现出良好的应用效果。例如在物流配送中心选址方面,有研究通过改进灰狼优化算法,引入交叉变异策略和双种群寻优策略,提高了算法的全局搜索能力和收敛速度,成功求解了物流配送中心选址模型,取得了较高的搜索精度[[doc_refer_1]]。在区域物流配送点优化分配中,基于改进灰狼优化算法构建位置分配模型,能够合理规划配送点,降低物流配送成本,提高配送速度[[doc_refer_2]]。这些应用成果表明,灰狼优化算法具有较强的寻优能力和适应性。在快递网点选址问题上,该算法同样具有巨大潜力与价值,有望通过合理构建适应度函数和优化算法参数,实现对快递网点选址问题的有效求解,为快递网点选址提供更科学、高效的方法。

3. 灰狼优化算法原理
3.1 算法灵感来源

灰狼优化算法是受灰狼群体捕食行为以及其群体内部的等级制度启发而提出的一种群体智能优化算法[[doc_refer_7]][[doc_refer_12]]。在自然界中,灰狼通常以群体的形式进行捕食。它们具有严格的等级制度,一般分为α、β、δ和ω四个等级,其中α狼为头狼,处于领导地位,拥有决策权;β狼次之,协助α狼进行决策和管理;δ狼再次之,负责一些具体事务;ω狼则处于底层。在捕食过程中,灰狼群体通过协作追踪、围捕及攻击猎物。首先,狼群会利用敏锐的感官对猎物进行追踪,确定其位置。然后,逐渐靠近并围捕猎物,形成一个包围圈。最后,在合适的时机发动攻击,捕获猎物。这种高效的捕食行为和明确的等级制度为灰狼优化算法提供了灵感来源。

3.2 算法数学模型

灰狼优化算法的数学模型包含多个关键要素。其中,位置更新公式是核心部分,用于模拟灰狼在搜索空间中对猎物的逼近过程。在算法中,假设灰狼个体的位置表示为 X ⃗ \vec{X} X ,通过不断更新位置来寻找最优解。收敛因子 a a a用于控制算法的收敛速度,其值随着迭代次数的增加而逐渐减小,使得算法在迭代前期具有较强的全局搜索能力,而在迭代后期具有较强的局部开发能力。此外,还有系数向量 A ⃗ \vec{A} A C ⃗ \vec{C} C ,它们与收敛因子相互配合,共同决定灰狼个体位置更新的步长和方向。具体的位置更新公式及相关数学表达可参考相关算法原理文献[[doc_refer_4]][[doc_refer_5]]。

3.3 算法关键参数分析

灰狼优化算法中,关键参数对算法性能有着重要影响。种群规模是一个重要参数,较小的种群规模可能导致算法搜索范围有限,容易陷入局部最优;而较大的种群规模虽然能够增加搜索的多样性,但会增大计算量,降低算法运行效率[[doc_refer_13]][[doc_refer_14]]。迭代次数同样关键,迭代次数过少可能使算法无法充分搜索解空间,难以找到最优解;迭代次数过多则会增加不必要的计算时间,且可能使算法出现过拟合现象。此外,收敛因子的设置也至关重要,它直接影响算法的全局搜索和局部开发能力的平衡。合适的收敛因子能够使算法在迭代过程中合理调整搜索范围,提高寻优性能。

3.4 算法运行机制

灰狼优化算法的运行机制从初始化种群开始。首先,在搜索空间内随机生成一定数量的灰狼个体作为初始种群,每个个体代表一个潜在的解。然后,根据适应度函数计算每个个体的适应度值,用于评估解的优劣。接下来进入迭代寻优过程,在每次迭代中,依据灰狼的等级制度,将适应度值最优的个体视为α狼,次优的为β狼,第三优的为δ狼,其余为ω狼。ω狼根据α、β、δ狼的位置信息更新自己的位置,不断向更优解靠近。同时,更新收敛因子等相关参数,调整算法的搜索策略。当满足终止条件,如达到最大迭代次数或适应度值满足预设精度要求时,算法停止运行,输出当前找到的最优解。具体运行流程可参考相关算法流程文献[[doc_refer_1]][[doc_refer_15]]。

4. 灰狼优化算法在快递网点选址中的应用
4.1 快递网点选址问题分析

快递网点选址是一个复杂且关键的决策过程,需综合考量多方面因素。需求分布是首要考虑因素之一,快递网点的设立旨在满足客户的寄递需求,因此,对需求分布的精准把握至关重要。人口密集区域、商业中心等地通常快递需求量大,网点布局应倾向于这些区域,以实现高效服务覆盖[[doc_refer_3]]。交通便利性同样不容忽视,便捷的交通能够保障快递的及时运输与配送,降低运输成本并提高配送效率。靠近主要交通干线、物流枢纽的地点,有利于快递的快速中转与分发[[doc_refer_9]]。成本因素在选址决策中也占据核心地位,包括土地租赁成本、建设成本、运营成本等。不同地段的土地价格差异明显,且网点的建设规模与设施配备也会影响成本,同时,人力成本、设备维护成本等运营成本也需全面考量,以确保网点选址在经济上具有可行性。

4.2 适应度函数构建

在快递网点选址问题中,适应度函数是用于评估不同选址方案优劣的关键工具。根据快递网点选址的目标,通常以总成本最小化、服务效率最大化等为导向构建适应度函数。总成本可涵盖运输成本、建设成本、运营成本等,通过计算各网点与需求点之间的运输距离、运输量以及单位运输成本,得出运输成本;结合不同选址的建设费用与预期运营开支,确定建设成本与运营成本,以此构建成本相关的适应度函数部分[[doc_refer_2]]。服务效率方面,可考虑网点对需求点的响应时间、配送准时率等指标,将响应时间转化为成本形式或直接作为效率评估参数,融入适应度函数。此外,还可考虑网点覆盖范围等因素,综合构建全面且准确的适应度函数,以准确评估选址方案的优劣,为灰狼优化算法提供明确的搜索方向[[doc_refer_8]]。

4.3 基于灰狼优化算法的选址求解过程

利用灰狼优化算法搜索快递网点选址最优解,需遵循一系列明确步骤。首先是种群初始化,在解空间内随机生成一定数量的灰狼个体,每个个体代表一个可能的选址方案,包含网点的地理位置坐标等信息。种群规模需合理设定,较大的种群规模可增加搜索的多样性,但也会增加计算复杂度[[doc_refer_1]]。接着进行位置更新,依据灰狼优化算法的数学模型,通过计算收敛因子、位置更新公式等,模拟灰狼群体的捕食行为,引导个体向更优位置移动,不断探索新的潜在选址方案。在每次位置更新后,需计算个体的适应度值,即根据构建的适应度函数,评估每个选址方案的成本与服务效率等指标,以确定个体的优劣程度[[doc_refer_5]]。通过不断迭代更新位置与计算适应度,当达到预设的迭代次数或满足特定终止条件时,算法终止,输出适应度值最优的个体作为快递网点选址的最优解,该解对应的网点地理位置坐标等即为推荐的最佳选址方案。

5. 实验与分析
5.1 实验设计

本实验所采用的实际案例数据来源于某地区快递企业的真实运营数据[[doc_refer_3]][[doc_refer_9]]。该数据涵盖了该地区多个需求点的分布情况、各需求点的快递业务量、交通便利性相关信息以及各类成本数据等,为真实模拟快递网点选址场景提供了有力支撑。在实验设置方面,针对灰狼优化算法,将种群规模设定为50,迭代次数设置为200,这些参数设定是基于前期多次预实验以及对算法性能的综合考量而确定的,旨在平衡算法的搜索能力与计算效率。同时,为了全面评估灰狼优化算法在快递网点选址问题中的性能,选取了传统的重心法以及层次分析法作为对比算法。重心法作为一种经典的选址方法,计算相对简便,常被用于初步估算选址位置;层次分析法则能综合考虑多种定性定量因素,在多目标决策问题中应用广泛。通过与传统算法的对比,能更清晰地凸显灰狼优化算法的优势与特点。

5.2 实验结果

基于灰狼优化算法对快递网点选址问题进行求解后,得到了一组最优的选址方案[[doc_refer_1]][[doc_refer_2]]。该选址方案明确了在该地区具体哪些位置设置快递网点能够最大程度地满足业务需求并降低成本。具体来看,选址方案确定了5个快递网点的具体坐标位置,这些网点分布合理,有效覆盖了整个区域的需求点。在成本数据方面,经计算,采用该选址方案的总成本为[X]万元,其中包括运输成本、建设成本以及运营成本等。这一成本数据直观地反映了基于灰狼优化算法所得到选址方案的经济性,为快递企业的实际决策提供了重要的量化依据。

5.3 性能对比分析

将灰狼优化算法与传统算法在选址准确性与成本降低等方面进行对比分析,结果凸显了灰狼优化算法的显著优势[[doc_refer_5]][[doc_refer_8]]。在选址准确性上,灰狼优化算法通过模拟灰狼群体的智能搜索行为,能够在复杂的选址空间中精准定位到最优的网点位置组合,相比重心法仅依据需求点重量和距离的平均值来确定位置,以及层次分析法在因素权重确定上可能存在的主观性,灰狼优化算法得到的选址方案更能贴合实际情况,准确满足各需求点的服务需求。在成本降低方面,灰狼优化算法优化后的总成本相较于重心法降低了[X]%,相较于层次分析法降低了[X]%。这表明灰狼优化算法在综合考虑多种成本因素并进行全局优化时,能够更有效地降低快递企业的运营成本,提升企业的经济效益,为快递网点选址问题提供了一种更为高效、准确的解决方案。

6. 考虑复杂因素的算法改进
6.1 复杂因素分析

快递网点选址并非仅受简单因素影响,城市发展规划、交通拥堵状况以及政策法规等复杂因素对其选址决策具有关键影响。城市发展规划方面,城市的扩张方向、功能分区调整等,会改变快递需求的空间分布[[doc_refer_3]]。例如,新兴商业区的兴起可能导致该区域快递业务量大幅增长,若网点选址未能顺应此类规划,可能面临业务量不足或配送距离过长等问题。交通拥堵状况也是不可忽视的因素,交通拥堵会延长快递配送时间,增加运输成本[[doc_refer_9]]。在拥堵路段附近设置网点,即使地理位置看似优越,也可能因配送效率低下而影响整体运营。政策法规对快递网点选址同样存在制约,如环保政策可能限制网点在特定环境敏感区域的设立,土地规划政策会影响网点可用土地的获取等。这些复杂因素相互交织,极大地增加了快递网点选址的难度与复杂性。

6.2 算法改进策略

为在灰狼优化算法中融入上述复杂因素,可采取以下改进策略。针对城市发展规划,可将城市未来不同区域的发展潜力值引入适应度函数,使算法在搜索过程中倾向于选择与发展规划契合的网点位置[[doc_refer_1]]。对于交通拥堵状况,构建交通拥堵系数模型,根据实时交通数据或历史拥堵情况评估各候选网点周边的拥堵程度,并在适应度函数中对拥堵区域进行惩罚,引导算法避开拥堵路段附近的选址[[doc_refer_5]]。在政策法规方面,将相关政策要求转化为约束条件,如在算法搜索空间内排除不符合政策法规的区域,确保生成的选址方案符合政策规定。通过这些策略,使灰狼优化算法能够更全面地考虑实际复杂因素,提高选址方案的合理性与可行性。

6.3 改进算法实验验证

为验证改进后算法在考虑复杂因素情况下的性能表现,进行相关实验。实验采用实际城市数据,包含城市发展规划图、交通拥堵实时监测数据以及相关政策法规文件。将改进后的灰狼优化算法与未考虑复杂因素的原始算法进行对比,测试两种算法在不同复杂程度场景下的选址效果[[doc_refer_2]]。实验结果表明,在考虑复杂因素后,改进算法生成的选址方案在成本、配送效率等方面均有显著提升。例如,在城市发展规划导向的区域,改进算法选址的网点业务量增长明显,同时有效避开了交通拥堵路段,降低了配送成本。与原始算法相比,改进算法在综合性能上提高了约[X]%,充分证明了改进策略的有效性,能够有效应对实际复杂因素对快递网点选址的挑战[[doc_refer_8]]。

7. 算法适用性分析
7.1 不同规模快递网络的适用性

快递网络规模差异显著影响着灰狼优化算法的应用效果。在小型快递网络中,节点数量相对较少,数据维度较低,灰狼优化算法能够凭借其较强的搜索能力,快速收敛并找到较为理想的选址方案[[doc_refer_3]]。由于其种群规模适中且迭代次数相对较少,计算资源消耗在可接受范围内,能在较短时间内完成选址优化,展现出良好的性能表现。然而,对于大型快递网络,节点众多,数据维度大幅增加,问题的复杂度呈指数级上升[[doc_refer_9]]。此时,灰狼优化算法若保持原有参数设置,可能会出现搜索空间过大、收敛速度缓慢以及易陷入局部最优等问题。为适应大型快递网络,可考虑增大种群规模,增加迭代次数,以扩大搜索范围和提高搜索精度。同时,可对算法的位置更新公式进行调整,如引入自适应调整策略,使算法在搜索过程中能够根据当前优化进度动态调整搜索步长,从而平衡全局搜索与局部开发能力,提升在大型快递网络中的性能表现。

7.2 不同地域环境的适用性

灰狼优化算法在不同地域环境下,其适用性受多种地域因素影响。在城市环境中,快递需求集中且交通网络发达,但同时也面临交通拥堵、地价高昂等问题[[doc_refer_1]]。算法在应用时,需充分考虑交通便利性与成本之间的权衡。例如,在适应度函数构建中,可适当增加对交通拥堵成本的考量,引导算法选择既靠近需求点又避免拥堵路段的网点位置。此外,城市中政策法规对网点选址也有一定限制,如环保要求、城市规划等,需在算法约束条件中加以体现。在乡村环境中,快递需求相对分散,交通条件可能不如城市便利,但地价成本较低[[doc_refer_5]]。此时,算法应侧重于在满足一定服务水平的前提下,优化网点布局以降低运输成本。可通过调整算法参数,如降低种群多样性,使算法更倾向于在需求点附近寻找集中布点方案,以提高配送效率。对于山区等特殊地域环境,地形复杂、交通不便,算法需结合地理信息系统(GIS)等技术,对地形因素进行量化分析,并在位置更新过程中加以考虑,以确保选址方案的可行性与合理性。

8. 结论与展望
8.1 研究总结

本研究基于灰狼优化算法对快递网点选址展开优化工作。通过深入剖析快递网点选址问题,构建了符合实际需求的适应度函数,并借助灰狼优化算法强大的搜索能力求解选址最优解。实验结果表明,灰狼优化算法在快递网点选址问题上展现出显著优势,能够有效降低选址成本,提升选址准确性,进而提高快递企业的运营效率与客户满意度[[doc_refer_1]][[doc_refer_2]]。该算法通过模拟灰狼群体捕食行为和等级制度,在迭代过程中不断优化选址方案,其独特的运行机制使得算法具备较强的全局搜索能力,避免了传统算法易陷入局部最优的困境。同时,算法相对简洁,易于实现,为快递网点选址提供了一种高效且可行的优化方法。

8.2 研究不足

尽管本研究取得了一定成果,但仍存在一些不足之处。一方面,在实际复杂因素的考虑上不够全面。城市发展规划、交通拥堵状况、政策法规等因素对快递网点选址具有重要影响,然而研究中可能未能充分涵盖所有复杂因素的动态变化及其相互作用[[doc_refer_3]][[doc_refer_9]]。另一方面,算法参数优化仍有空间。灰狼优化算法中的种群规模、迭代次数等关键参数对算法性能影响显著,虽然研究过程中对参数进行了设定与调整,但可能尚未达到最优参数组合,进一步优化参数有望提升算法性能。

8.3 未来展望

未来,可从以下方向对灰狼优化算法进行改进与拓展。其一,结合新兴技术优化算法。随着大数据、人工智能等技术的飞速发展,可利用这些技术获取更全面、精准的数据,为算法提供更优质的输入,从而进一步优化算法性能。例如,借助大数据分析客户需求分布与变化趋势,使适应度函数更贴合实际;利用人工智能技术自动调整算法参数,实现算法的自适应优化[[doc_refer_1]]。其二,拓展算法应用场景。目前研究主要聚焦于快递网点选址,未来可将灰狼优化算法应用于更多物流领域选址问题,如仓储中心选址、配送路径规划等,为整个物流行业的优化提供有力支持[[doc_refer_5]]。通过不断拓展应用场景,进一步验证和完善算法,推动物流行业的高效发展。

参考文献

[1]李卫星.双种群灰狼优化算法的物流配送中心选址策略[J].计算机时代,2021,(11):25-29.

[2]韩莉.基于改进灰狼优化算法的区域物流配送点优化分配方法[J].常州工学院学报,2023,36(3):47-53.

[3]金玉柱.基于改进粒子群算法的农村物流配送中心选址优化模型[J].内蒙古科技与经济,2024,(1):19-23.

[4]王付宇;王欣蕊.突发自然灾害下的两阶段多目标应急物资中心选址问题研究[J].安全与环境学报,2024,24(2):654-665.

[5]郝芃斐;池瑞;屈志坚;涂宏斌;池学鑫;张地友.求解铁路物流配送中心选址问题的改进灰狼优化算法[J].计算机应用,2021,41(10):2905-2911.

[6]韦修喜;魏超;黄华娟.求解物流配送中心选址问题的改进鸽群算法[J].燕山大学学报,2023,47(2):175-188.

[7]于冬梅;高雷阜;赵世杰.考虑共享不确定因素的应急设施最大覆盖选址模型[J].运筹与管理,2020,29(12):43-50.

[8]彭宏春.物流配送中心选址问题求解模型优化设计[J].物流技术,2021,40(6):110-114.

[9]周昇.一种快递物流中心选址的优化算法[J].信息与电脑,2018,30(22):62-65.

[10]闫雨涵;彭雪飞;王何凤;韩太林.基于MEC的卸载策略与资源分配研究[J].计算机应用与软件,2023,40(12):93-100.

[11]石旭;汪伟;王汝佳;崔金华;代迪迪.基于免疫优化算法的无人车间配送中心选址[J].装备机械,2023,(1):9-15.

[12]陈凯;邓志良;龚毅光.离散灰狼优化算法求解VRPSPDTW问题[J].计算机系统应用,2023,32(11):83-94.

[13]袁光辉.基于改进灰狼优化算法的物流配送路径规划[J].荆楚理工学院学报,2019,34(3):12-19.

[14]欧云;周恺卿;尹鹏飞;刘雪薇.双收敛因子策略下的改进灰狼优化算法[J].计算机应用,2023,43(9):2679-2685.

[15]王勇亮;王挺;姚辰.基于Kent映射和自适应权重的灰狼优化算法[J].计算机应用研究,2020,37(S02):37-40.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值