贝叶斯网是一种帮助人们将概率统计应用于复杂领域,进行不确定性推理和数据分析的工具。他起源于人工智能领域的研究。贝叶斯网是一种系统地描述随机变量之间关系的语言。构造贝叶斯网的主要目的是进行概率推理,即计算一些事件发生的概率。贝叶斯网是概率论与图论相结合的产物,它一方面用图论的语言直观的揭示问题结构,另一方面又按照概率论的原则对问题结构加以利用,降低推理的计算复杂度。
贝叶斯网络的构造主要有两种方式:第一种是通过咨询专家手工构造;第二种是通过数据分析获得(讨论利用机器学习的方法分析数据获得贝叶斯,即贝叶斯学习)。贝叶斯网络的构造主要包括两个方面:确定网络结构与评估条件概率。
推理是通过计算回答查询的过程。贝叶斯网的推理问题有三大类:后验概率问题、最大后验假设问题以及最大可能解释问题。其中主要解决的推理问题是后验概率问题。后验概率问题指的是已知贝叶斯网络中某些变量的取值,计算另外一些变量的后验概率分布问题。主要有以下四种类型:第一种是从结果到原因的诊断推理;第二种是从原因到结果的预测推理;第三种是同一结果的不同原因之间的原因关联推理。
(以上知识概述一下什么是贝叶斯网、贝叶斯推理以及贝叶斯学习的概念,未涉及其中重要的算法,如:变量消元法、团树传播算法、随机抽样算法、EM算法、爬山算法等)
以下来举一个具体实践的例子说明贝叶斯网的构造。
为提高诊断水平,研发人员开发了一个叫做PATHFINDER的专家系统.这个贝叶斯网由开发人员和医疗专家一起手工建造的,确定变量及取值用了8h,确定网络拓扑结构用了35h,对总共14000个条件概率值的评估有用了40h,最终的到了一个由121个节点、195条边构成的网络。用PATHFINDER做推理问题,即给