【论文必备新手版】最强科研绘图工具——Origin绘图(10步让你了解Origin)

1、双击Origin图标,进入Origin界面,新建工程,保存至电脑位置

2、创建空book,Excel复制粘贴,导入数据

3、创建空Graph,设置画布的尺寸

由于绘图导出的一般是为插入到论文中,双列的论文,单列宽度大概是9cm,为了图可以一比一放置于论文,因此在绘图时就将其设置好。

双击白色区域(画布),设置宽度为9cm,高度为15cm

4、添加坐标系,设置坐标系的位置与尺寸

双击白色区域(画布),设置靠左1.5cm,靠上1cm,宽度为6cm,高度为5cm

5、绘制图线

点击book1,则可显示x、y等,选择左侧折线图 

勾选时间与信号的x、y,点击添加、应用,则图表中可出现折线图

6、设置坐标轴格式

双击坐标轴,即可弹出坐标轴设置框,设置你所需要坐标轴的格式

7、设置线的格式

双击你所画线条,就可得到线条设置框

8、设置标题的格式

在第6步时,设置坐标轴格式时,可以设置上轴标题,这里设置标题格式右击标题点击属性即可更改标题格式

9、添加并设置图制

在左侧工具栏,找到重构图例,图例一般在右上角,可以进行拖拽,也可右击点击属性进行修改

10、保存工程,导出图片

<think>嗯,用户想用Python或者MATLAB绘制莫尔势能分布图。首先,我需要明确什么是莫尔势能。莫尔势能通常和莫尔条纹有关,可能是在二维材料中由于层间扭曲产生的周期性势场。比如在石墨烯双层结构中,转角会导致形成莫尔超晶格,对应的势能分布可能需要用一些周期性的函数来表示,比如正弦或余弦函数的组合。 用户提到科研论文绘图,所以可能需要生成高质量的图像,符合学术规范。接下来要确定用Python还是MATLAB。根据引用[1],MATLAB在处理矩阵和数学运算方面比较方便,尤其是内置的绘图函数很强大。但Python的Matplotlib和Numpy库同样适用,并且开源免费,可能更受欢迎。 接下来,我需要考虑如何生成莫尔势能的数学模型。假设莫尔势能是一个二维周期性函数,可能由两个不同方向的周期叠加而成。例如,V(x,y) = V0*(cos(k1*x) + cos(k2*y + θ)),其中k1和k2是波矢,θ是相位差。或者更复杂的形式,比如两个不同方向的余弦函数乘积。 然后,实现骤大概分为:定义势能函数、生成网格点、计算每个点的势能值、绘制等高线图或三维曲面图。在MATLAB中,可以使用meshgrid创建网格,然后计算V,再用surf或contourf绘图。Python中则是用numpy的meshgrid和matplotlib的相应函数。 需要注意参数设置,比如波矢的大小会影响莫尔条纹的密度,相位差可能影响图案的对称性。用户可能需要调整这些参数来匹配实际研究的体系。此外,颜色映射的选择、坐标轴的标注、颜色条的添加都是绘图时的关键点,影响最终呈现效果。 用户可能遇到的问题包括:如何选择合适的势能函数形式,如何处理网格的分辨率以确保图像平滑,以及如何调整图形样式以满足期刊要求。需要提醒用户检查公式是否正确,是否反映了实际的物理模型,同时提供代码示例和优化建议。 最后,生成相关问题时要围绕莫尔势能的应用、其他绘图工具、参数影响以及三维可视化方法,帮助用户进一探索。</think>### 绘制莫尔势能分布图的方法 #### 方法概述 莫尔势能(Moiré potential)分布图常用于二维材料层间扭转角研究中,可通过编程语言如 **Python** 或 **MATLAB** 实现。其核心骤包括: 1. **定义势能函数**:根据莫尔超晶格理论构建周期性势场模型,例如: $$ V(x,y) = V_0 \left[ \cos(k_1 x) + \cos(k_2 y) + \cos(k_1 x + k_2 y) \right] $$ 其中 $k_1$ 和 $k_2$ 为波矢,与材料晶格常数相关[^1]。 2. **生成网格数据**:创建二维坐标网格并计算每个点的势能值。 3. **可视化处理**:通过等高线图或热力图展示势能分布。 --- #### Python实现(基于Matplotlib和NumPy) ```python import numpy as np import matplotlib.pyplot as plt # 参数设置 V0 = 1.0 k1 = 2 * np.pi / 5 # 波矢与晶格周期相关 k2 = 2 * np.pi / 5 theta = np.pi / 6 # 扭转角相位差 # 生成网格 x = np.linspace(0, 20, 500) y = np.linspace(0, 20, 500) X, Y = np.meshgrid(x, y) # 定义莫尔势能函数 V = V0 * (np.cos(k1 * X) + np.cos(k2 * Y + theta) + np.cos(k1 * X + k2 * Y)) # 绘图 plt.figure(figsize=(8,6)) contour = plt.contourf(X, Y, V, levels=50, cmap='viridis') plt.colorbar(contour, label='Potential Energy') plt.xlabel('x (nm)') plt.ylabel('y (nm)') plt.title('Moiré Potential Distribution') plt.show() ``` --- #### MATLAB实现 ```matlab % 参数设置 V0 = 1.0; k1 = 2 * pi / 5; % 波矢与晶格周期相关 k2 = 2 * pi / 5; theta = pi / 6; % 扭转角相位差 % 生成网格 [x, y] = meshgrid(linspace(0, 20, 500), linspace(0, 20, 500)); % 计算莫尔势能 V = V0 * (cos(k1 * x) + cos(k2 * y + theta) + cos(k1 * x + k2 * y)); % 绘图 figure; contourf(x, y, V, 50, 'LineColor', 'none'); colormap('parula'); colorbar; xlabel('x (nm)'); ylabel('y (nm)'); title('Moiré Potential Distribution'); ``` --- #### 关键注意事项 1. **势能模型选择**:需根据具体材料体系调整波矢 $k_1, k_2$ 和相位差 $\theta$,例如石墨烯莫尔势可能涉及更复杂的哈密顿量[^1]。 2. **分辨率优化**:网格点数(如示例中500×500)影响图像平滑度,但需平衡计算资源。 3. **可视化增强**: - 使用`viridis`/`parula`等科学配色方案 - 添加比例尺和物理量单位 - 导出时选择矢量格式(如PDF)以满足论文要求 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值