机器学习-支持向量机 -- 多分类SVM(1),前端性能优化总结

本文介绍了多分类学习的几种策略,如一对一、一对其余和多对多,重点讨论了如何通过binarySVM解决多分类问题以及不同策略的测试阶段处理。同时,还提及了前端开发者的学习资源包,包括前端开发、面试题和Linux知识.
摘要由CSDN通过智能技术生成

多分类SVM

======


1. 多分类学习概述

2. 多分类学习 – 一对一

3. 多分类学习 – 一对多余

4. 一对多 VS 一对其余

5. 多分类学习 – 多对多


1. 多分类学习概述


(1)多分类学习方法****:****

二分类学习方法推广到多类

利用二分类学习器解决多分类问题(常用)

对问题进行拆分,为拆出的每个二分类任务训练一个分类器

对于每个分类器的预测结果进行集成以获得最终的多分类结果

(2)拆分策略

一对一(One vs. One, OvO)

一对其余(One vs. Rest, OvR)

多对多(Many vs. Many, MvM)

2. 多分类学习 – 一对一


一对一:one-against-one, or pairwise classification

设训练集数据共M个类,one-against-one方法是在每两个类之间都构造一个binary SVM。

对第i类数据和第j类数据,训练一个binary SVM,即求解下列二次规划问题。

测试阶段:投票策略(voting strategy)

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注前端)
img

前端面试题汇总

JavaScript

CodeChina开源项目:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

性能

linux

前端资料汇总

_convert/d7f6750332c78eb27cc606540cdce3b4.png)

linux

前端资料汇总

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值