sklearn综合示例5:多分类分类器

这篇博客介绍了如何使用二元分类器解决多类分类问题,通过一对剩余(OvR)和一对一双(OvO)策略,并以MNIST数据集为例,展示了SVM和SGDClassifier的使用。文章强调了准确率和混淆矩阵在评估模型性能中的作用,并通过混淆矩阵分析了错误分类的情况,提出通过改进特定类别的分类错误来提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二元分类器在两个类中区分,而多类分类器(也称为多项分类器)可以区分两个以上的类。有一些算法(如随机森林分类器或朴素贝叶斯分类器)可以直接处理多个类。也有一些严格的二元分类器(如支持向量机分类器或线性分类器)。但是,有多种策略可以让你用几个二元分类器实现多类分类的目的。

我们这里使用的是mnist数据集。

OVR
要创建一个系统将数字图片分为10类(从0到9),一种方法是训练10个二元分类器,每个数字一个(0检测器、1检测器、2检测器,以此类推)。然后,当你需要对一张图片进行检测分类时,获取每个分类器的决策分数,哪个分类器给分最高,就将其分为哪个类。这称为一对剩余(OvR)策略,也称为一对多(oneversusall)。

OVO
另一种方法是为每一对数字训练一个二元分类器:一个用于区分0和1,一个区分0和2,一个区分1和2,以此类推。这称为一对一(OvO)策略。如果存在N个类别,那么这需要训练N×(N1)/2个分类器。对于MNIST问题,这意味着要训练45个二元分类器!当需要对一张图片进行分类时,你需要运行45个分类器来对图片进行分类,最后看哪个类获胜最多。OvO的主要优点在于,每个分类器只需要用到部分训练集对其必须区分的两个类进行训练。

有些算法(例如支持向量机分类器)在数据规模扩大时表现糟糕。对于这类算法,OvO是一个优先的选择,因为在较小训练集上分别训练多个分类器比在大型数据集上训练少数分类器要快得多。但是对大多数二元分类器来说,OvR策略还是更好的选择。ScikitLearn可以检测到你尝试使用二元分类算法进行多类分类任务,它会根据情况自动运行OvR或者OvO。我们用sklearn.svm.SVC类来试试SVM分类器:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

二分类模型

我们先准备好数据:

from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1)
X,y = mnist['data'], mnist['target']

X_train, X_test = X[:6000], X[6000:]
y_train, y_test = y[:6000].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值