【LeetCode】516. 最长回文子序列(中等)——代码随想录算法训练营Day57

本文讲述了如何使用动态规划方法解决LeetCode中的最长回文子序列问题。通过构建dp数组,计算字符串s中任意两个字符之间的最长回文子序列长度,最终返回整个字符串的最大回文子序列长度。算法的时间复杂度为O(n²),空间复杂度也为O(n²)。
摘要由CSDN通过智能技术生成

题目链接:516. 最长回文子序列

题目描述

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。

提示:

  • 1 <= s.length <= 1000
  • s 仅由小写英文字母组成

文章讲解:代码随想录

视频讲解:动态规划再显神通,LeetCode:516.最长回文子序列_哔哩哔哩_bilibili

题解1:动态规划

思路:使用动态规划法求解子序列问题。

动态规划分析:

  • dp 数组以及下标的含义:dp[i][j] 代表字符串 s 的 [i, j] 部分的最长回文子序列长度。
  • 递推公式:s[i] 等于 s[j] 时,dp[i][j] = dp[i + 1][j - 1] + 2;否则,dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1])。
  • dp 数组初始化:dp[i][i] 初始化为1,其余为0。
  • 遍历顺序:dp[i][j] 的状态依赖于下方,左方和左下方的状态,所以遍历顺序为从下往上,从左往右。
  • 打印 dp 数组:以输入 "bbbab" 为例,dp 数组为 [ [ 1, 2, 3, 3, 4 ], [ 0, 1, 2, 2, 3 ], [ 0, 0, 1, 1, 3 ], [ 0, 0, 0, 1, 1 ], [ 0, 0, 0, 0, 1 ] ]。
/**
 * @param {string} s
 * @return {number}
 */
var longestPalindromeSubseq = function(s) {
    const dp = new Array(s.length).fill().map(() => new Array(s.length).fill(0));
    for (let i = 0; i < s.length; i++) {
        dp[i][i] = 1;
    }
    for (let i = s.length - 2; i >= 0; i--) {
        for (let j = i + 1; j < s.length; j++) {
            if (s[i] === s[j]) {
                dp[i][j] = dp[i + 1][j - 1] + 2;
            } else {
                dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
            }
        }
    }
    return dp[0][s.length - 1];
};

分析:时间复杂度为 O(n²),空间复杂度为 O(n²)。

收获

练习使用动态规划法求解子序列问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴雪月乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值