题目链接:516. 最长回文子序列
题目描述
给你一个字符串 s
,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab" 输出:4 解释:一个可能的最长回文子序列为 "bbbb" 。
示例 2:
输入:s = "cbbd" 输出:2 解释:一个可能的最长回文子序列为 "bb" 。
提示:
1 <= s.length <= 1000
s
仅由小写英文字母组成
文章讲解:代码随想录
视频讲解:动态规划再显神通,LeetCode:516.最长回文子序列_哔哩哔哩_bilibili
题解1:动态规划
思路:使用动态规划法求解子序列问题。
动态规划分析:
- dp 数组以及下标的含义:dp[i][j] 代表字符串 s 的 [i, j] 部分的最长回文子序列长度。
- 递推公式:s[i] 等于 s[j] 时,dp[i][j] = dp[i + 1][j - 1] + 2;否则,dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1])。
- dp 数组初始化:dp[i][i] 初始化为1,其余为0。
- 遍历顺序:dp[i][j] 的状态依赖于下方,左方和左下方的状态,所以遍历顺序为从下往上,从左往右。
- 打印 dp 数组:以输入 "bbbab" 为例,dp 数组为 [ [ 1, 2, 3, 3, 4 ], [ 0, 1, 2, 2, 3 ], [ 0, 0, 1, 1, 3 ], [ 0, 0, 0, 1, 1 ], [ 0, 0, 0, 0, 1 ] ]。
/**
* @param {string} s
* @return {number}
*/
var longestPalindromeSubseq = function(s) {
const dp = new Array(s.length).fill().map(() => new Array(s.length).fill(0));
for (let i = 0; i < s.length; i++) {
dp[i][i] = 1;
}
for (let i = s.length - 2; i >= 0; i--) {
for (let j = i + 1; j < s.length; j++) {
if (s[i] === s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.length - 1];
};
分析:时间复杂度为 O(n²),空间复杂度为 O(n²)。
收获
练习使用动态规划法求解子序列问题。