[每日一题] 还是最小公倍数

该博客主要介绍了一种利用辗转相除法(欧几里得算法)解决求解多个数最小公倍数(LCM)问题的方法。博主首先强调了遵循题目输入输出格式的重要性,然后详细解释了解题思路,包括如何通过循环处理多个测试用例,并逐步求解多个数的LCM。代码示例展示了如何将这种方法应用于实际编程中,以C++语言实现。
摘要由CSDN通过智能技术生成

题目:

解题思路及过程

此题为求最小公倍数的升级版,但解题算法核心仍是辗转相除法(欧几里得算法)。注意题目当中的一些细节,例如题目中要求输入多个测试用例,此题值得注意的是要严格按照题目中要求的输入和输出格式等等。

像这种要求输入多个测试用例的问题,先不着急写外循环,化繁为简,可以先写出1个测试样例的代码,要输入多个测试用例,只需再在最外层套一个循环即可。该题与之前的最小公倍数题目有一定的改变。之前是输入2个数,求最小公倍数(后面简称LCM)。而该题要求输入多个数,来求得LCM

我们平时接触最多的还是2个数求LCM,很少求3个数及以上的LCM。因此,我们可以从最简单的3个数开始看。3个数之间求LCM,可以先求得任意2个数之间的LCM,再求得该LCM与另外一个数的LCM,即可得到3个数的LCM。以此类推,要求n个数的LCM,为了方便,可以先把这n个数放到数组里面。采用循环语句,第一次可以先求得第一个数组元素和第二个数组元素的LCM,然后再求得该LCM与下一个数组元素的LCM,直到下一个数组元素为0,退出循环。最后求得该LCM,即为这n个数的最小公倍数。

该解题思路还是比较容易理解的,要注意循环体不要混淆,层次条理要清晰。

下面附上我的code:

#include<iostream>
using namespace std;
 
int main()
{
	int a[30]={0},b,temp,t,i,N,C;
	cin>>C;
    while(C--) 
    {
    	cin>>N;
    	for(i=1;i<=N;i++)
    	    cin>>a[i];
		b=a[1];
    	for(i=1;i<=N;i++)
	    {
		    if(a[i+1]==0)
	    	    break;
		    t=b*a[i+1];
	        while(b!=0)
	        {
		    temp=a[i+1]%b;
		    a[i+1]=b;
            b=temp;
	        }
		    b=t/a[i+1];
	    }
	    cout<<b<<endl;
	}
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值