【寒假每日一题】洛谷 P1958 上学路线

该问题是一个典型的网格路径计数问题,通过动态规划解决。给定一个棋盘式的街道网络,从(1,1)到(a,b)需要避开N个施工路口,程序通过计算所有可能的路径来确定可通行的上学路线总数。
摘要由CSDN通过智能技术生成

题目链接:P1958 上学路线 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题目描述

你所在城市的街道好像一个棋盘,有 a 条南北方向的街道和 b 条东西方向的街道。南北方向的 a 条街道从西到东依次编号为 l 到 a,而东西方向的 b 条街道从南到北依次编号为 l 到 b,南北方向的街道 i 和东西方向的街道 j 的交点记为 (i,j)。

你住在 (1,1) 处,而学校在 (a,b) 处,你骑自行车去上学,自行车只能沿着街道走,而且为了缩短时间只允许沿着向东和北的方向行驶。

现在有 N 个交叉路口在施工 (X1,Y1)、(X2,Y2)……,(Xn,Yn),这些路口是不能通车的。

问你上学一共有多少走法?

输入格式

第一行包含两个整数 a 和 b,并且满足 1 ≤ a,b ≤ 16。

第二行包含一个整数 N,表示有 N 个路口在维修(1 ≤ N ≤ 40)。

接下来 N 行,每行两个整数 Xi,Yi,描述路口的位置。

输出格式

输出一个整数表示从 (1,1) 到 (a,b) 的行车路线总数。

样例 #1

样例输入 #1

5 4
3
2 2
2 3
4 2

样例输出 #1

5

AC code:(以(0,0)为左上角,(n,m)为右下角)

#include<iostream>
#include<algorithm>
#include<vector>

using namespace std;

int main()
{
	int n,m;
	cin>>n>>m;
	vector<vector<int>> a(n + 1 , vector<int> (m + 1 , 1));
	vector<vector<int>> dp(n + 1 , vector<int> (m + 1 , 0)); // dp[i][j] 表示从(1,1)到(x,y)的方案个数 
	
	int tt;
	cin>>tt;
	while(tt --)
	{
		int x,y;
		cin>>x>>y;
		a[x][y] = 2;
	}
	
	dp[1][1] = 1;
	for(int i = 1 ; i <= n ; i ++)
	{
		for(int j = 1 ; j <= m ; j ++)
		{
			if(!(i == 1 && j == 1) && a[i][j] == 1)
			{
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
			}
		}
	}
	cout<<dp[n][m]<<endl;
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值