目录
算法评估
算法评估相关概念
P-R曲线
AP计算
常用数据集
MNIST
MINIST数据集主要由一些手写数字的图片和对应标签组成,是常用的手写数字识别数据集,图片共有10类,分别对应从0~9;由60000个训练样本和10000个测试样本组成,每个样本都是一张28*28像素的手写灰度数字图片。
原始的MNIST数据库包含下面4个文件:
Fashion-MNIST数据集
Fashion-MNIST数据集是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando旗下的研究部门提供,涵盖了来自 10 种类别的共7万个不同商品的正面图片;FashionMNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致,仍为60000/10000 的训练测试数据划分,28x28 的灰度图片。下图是数据集中的类,以及每个类的十个随机图像:
CIFAR 10数据集
CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每 个类有6000个图像。有50000个训练图像和10000个测试图像,数据集分为五个训练批次和一个测试批次,每个批次有10000 个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。以下是数据集中的类,以及来自每个类的10个随机图像:
MS COCO数据集
PASCAL的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集;数据集以scene understanding为目标,主要从复杂的日常场景中截取; 包含目标分类(识别)、检测、分割、语义标注等数据集;ImageNet竞赛停办后,COCO竞赛就成为是当前目标识别、检测等领域的一个最权威、最重要的标杆;官网:http://cocodataset.org
该数据集提供的标注类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。该数据集实例如下:
目标检测问题
YOLO算法
一种实时目标检测算法,由Joseph Redmon等人在2015年提出。YOLO的核心思想是将目标检测任务看作一个回归问题,从而实现了端到端的目标检测,极大地提高了检测速度。
网络结构包含24个卷积层和2个全连接层;其中前20个卷积层用来做预训练,后面4个是随机初始化的卷积层,和2个全连接层。
YOLO v1在PASCAL VOC数据集上进行的训练,因此输入图片为 448 × 448 × 3。实际中如为其它尺寸,需要resize或切割成 要求尺寸。输出结果为 个7 × 7 × 30的张量,对应 7 × 7个cell。每个cell对应2个包围框(bounding box, bb),预测不同大小和宽高比, 对应检测不同目标。每个bb有5个分量, 分别是物体的中心位置(𝑥, 𝑦)和它的高 (ℎ) 和宽 (𝑤) ,以及这次预测的置信度。