神经网络与深度学习-学习笔记(3)——深度学习视觉应用

目录

算法评估

算法评估相关概念

P-R曲线

AP计算

常用数据集

MNIST

Fashion-MNIST数据集

CIFAR 10数据集

MS COCO数据集

目标检测问题

YOLO算法


算法评估

算法评估相关概念

TP: 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数
FP: 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数
FN:被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数
TN: 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数
混淆矩阵:

P-R曲线

P-R的关系曲线图,表示了召回率和准确率之间的关系
精度(准确率)越高,召回率越低

AP计算

mAP :均值平均准确率

其中 𝑁 代表测试集中所有图片的个数, 𝑃(𝑘) 表示在能识别出 𝑘 个图片的时候Precision的值,而 Δ𝑟(𝑘) 则表示识别图片个数从 𝑘 − 1 变化到 𝑘 时(通过调整阈值)Recall值的变化情况。 

常用数据集

MNIST

        MINIST数据集主要由一些手写数字的图片和对应标签组成,是常用的手写数字识别数据集,图片共有10类,分别对应从0~9;由60000个训练样本和10000个测试样本组成,每个样本都是一张28*28像素的手写灰度数字图片。

        原始的MNIST数据库包含下面4个文件:

Fashion-MNIST数据集


        Fashion-MNIST数据集是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando旗下的研究部门提供,涵盖了来自 10 种类别的共7万个不同商品的正面图片;FashionMNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致,仍为60000/10000 的训练测试数据划分,28x28 的灰度图片。下图是数据集中的类,以及每个类的十个随机图像:

CIFAR 10数据集

        CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每 个类有6000个图像。有50000个训练图像和10000个测试图像,数据集分为五个训练批次和一个测试批次,每个批次有10000 个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。以下是数据集中的类,以及来自每个类的10个随机图像:

MS COCO数据集

        PASCAL的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集;数据集以scene understanding为目标,主要从复杂的日常场景中截取; 包含目标分类(识别)、检测、分割、语义标注等数据集;ImageNet竞赛停办后,COCO竞赛就成为是当前目标识别、检测等领域的一个最权威、最重要的标杆;官网:http://cocodataset.org

        该数据集提供的标注类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。该数据集实例如下:

目标检测问题

目标检测是在给定的图片中精确找到物体所在位置,并标注出物体的类别。物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,并且物体还可以是多个类别。

目标检测问题发展
➢R-CNN
SPP NET
Fast R-CNN
Faster R-CNN
最终实现 YOLO

YOLO算法

        一种实时目标检测算法,由Joseph Redmon等人在2015年提出。YOLO的核心思想是将目标检测任务看作一个回归问题,从而实现了端到端的目标检测,极大地提高了检测速度。

        网络结构包含24个卷积层和2个全连接层;其中前20个卷积层用来做预训练,后面4个是随机初始化的卷积层,和2个全连接层。   

       YOLO v1在PASCAL VOC数据集上进行的训练,因此输入图片为 448 × 448 × 3。实际中如为其它尺寸,需要resize或切割成 要求尺寸。输出结果为 个7 × 7 × 30的张量,对应 7 × 7个cell。每个cell对应2个包围框(bounding box, bb),预测不同大小和宽高比, 对应检测不同目标。每个bb有5个分量, 分别是物体的中心位置(𝑥, 𝑦)和它的高 (ℎ) 和宽 (𝑤) ,以及这次预测的置信度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值