目录
对数回归与多分类回归
指数回归
多分类回归
感知机模型
感知机(Perceptron)是在1957年时由Rosenblatt提出的,可以解决线性分类问题,是神经网络和支持向量机的基础。感知机可以用来解决线性分类问题:
感知机原理
在方程为上的一点,到直线的距离为:
如果是高维情况,分类面为超平面,则有:
其中,。
感知机模型
感知机从输入到输出的模型如下:
对于样本,有:
- 正确分类样本:
- 错误分类样本:
输入:训练数据集(监督学习)
输出:
- 赋初值,数据序号,迭代次数;
- 选择数据点;
- 判断该数据点是否为当前模型的误分类点,即判断若,则更新权值:;
转到步骤2,直到训练集中没有误分类点。
训练过程
感知机与神经元类比
多层感知机
XOR问题
多层感知机
- 三层感知器可识别任一凸多边形或无界的凸区域。
- 更多层感知器网络,可识别更为复杂的图形。
多层前馈网络
多层感知机(MLP)是人工神经网络中的一种,属于前馈神经网络的范畴。它由至少三层构成:输入层、一个或多个隐藏层以及输出层。在多层感知机中,信息的流动是单向的,从输入层流向隐藏层,然后到达输出层。
输入层负责接收外部输入的数据,并将其传递给隐藏层。每个隐藏层的神经元会对输入数据进行加权求和,并加上一个偏置项,然后通过激活函数处理得到该神经元的输出。这个输出又会作为下一层神经元的输入。隐藏层可以有多个,它们的作用是提取输入数据的特征并进行非线性变换。
输出层的神经元根据前一层的输出计算最终结果,同样涉及加权求和、偏置和激活函数。多层感知机的输出可以是分类标签、数值预测或者其他类型的数据。
多层感知机的学习过程通常采用反向传播算法,该算法通过计算损失函数的梯度,并根据梯度下降原则调整网络中的权重和偏置,以最小化输出误差。
全连接网络是多层感知机的一种特殊形式,其中除了输入层之外,每一层的神经元都与前一层的所有神经元相连。这种连接方式使得网络能够捕捉到输入数据之间的复杂关系。
- 已知网络的输入/输出样本,即监督信号
BP 学习算法由正向传播和反向传播组成:
正向传播是输入信号从输入层经隐层,传向输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传播。 反向传播是将误差 ( 样本输出与网络输出之差)按原联接通路反向计算,由梯度下降法调整各层节点的权值和阈值,使误差减小。