基于Hilbert包络谱、Haar小波、FFT分析方法实现故障信号分析附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

​滚动轴承故障诊断是机械故障检测中的一个重要方面.介绍了小波分析方法,以小波分析和包络谱分析在故障诊断中的应用为例子,利用小波分析信号突变的特点,利用Hilbert包络并进行频谱分析,体现了小波包络谱分析的优越性,实现故障诊断的目的.

⛄ 部分代码

function time=time_statistical_compute(x)

%%对时域信号进行统计量分析

%% p2,p10返回有量纲指标,f1,f2,f3,f4,f5返回无量纲指标

N=length(x);

p1=mean(x); %均值

x=x-p1;

p2=sqrt(sum(x.^2)/N); %均方根值,又称有效值(!)

p3=(sum(sqrt(abs(x)))/N).^2; %方根幅值(!)

p4=sum(abs(x))/N; %绝对平均值

p5=sum(x.^3)/N; %歪度

p6=sum(x.^4)/N; %峭度

p7=sum((x).^2)/N; %方差

p8=max(x);%最大值

p9=min(x);%最小值

p10=p8-p9;%峰峰值

%%以上都是有量纲统计量,以下是无量纲统计量

f1=p2/p4; %波形指标

f2=p8/p2; %峰值指标  

f3=p8/p4; %脉冲指标

f4=p8/p3; %裕度指标

f5=p6/((p2)^4); %峭度指标

time=[p1,p2,p3,p4,p5,p6,p7,p10,f1,f2,f3,f4,f5];

⛄ 运行结果

⛄ 参考文献

[1] 任学平, 马文生. 基于小波包络谱分析的减速机故障诊断研究[J]. 煤矿机械, 2008.

[2] 常春王启悦姜久春高洋吴铁洲. 基于小波分解和Hilbert包络谱分析的电池故障诊断方法[J]. 蓄电池, 2021, 58(6):251-256.

[3] 张盈盈, 潘宏侠, 郑茂远. 基于小波包和Hilbert包络分析的滚动轴承故障诊断方法[J]. 电子测试, 2010(6):5.

[4] 宫玮丽, 梁波, 王晓兰. 基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J]. 工业仪表与自动化装置, 2018(2):4.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值