【信道容量】基于QPSK+8PSK+16PSK+16QAM数字信号调制信道容量仿真附Matlab代码

文章介绍了如何使用Matlab进行信道容量的计算,特别是基于QPSK、8PSK、16PSK和16QAM调制方式。通过香农公式,计算不同调制方式下的理论最大数据传输率,并提供了一段Matlab代码示例来展示这一过程。此外,还提到了实际信道容量可能受到的各种影响因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

⛄ 内容介绍

信道容量是指在给定的信道条件下,能够传输的最大数据率。对于基于QPSK、8PSK、16PSK和16QAM数字信号调制的信道容量,可以通过香农公式计算。

首先,需要确定信道的带宽(B)和信噪比(SNR)。

对于QPSK调制,每个符号可以传输2个比特(2^2 = 4),所以有效比特率(R)为2倍信号速率(也即2倍带宽)。

对于8PSK调制,每个符号可以传输3个比特(2^3 = 8),所以有效比特率(R)为3倍信号速率(也即3倍带宽)。

对于16PSK调制,每个符号可以传输4个比特(2^4 = 16),所以有效比特率(R)为4倍信号速率(也即4倍带宽)。

对于16QAM调制,每个符号可以传输4个比特(2^4 = 16),所以有效比特率(R)为4倍信号速率(也即4倍带宽)。

然后,利用香农公式计算信道容量(C): C = B * log2(1 + SNR)

其中,C为信道容量,B为信道带宽,SNR为信噪比。

需要注意的是,以上计算结果是理论值,实际的信道容量可能会受到信道衰落、噪声等因素的影响,实际传输速率可能会低于理论值。

⛄ 代码

clcclear allsnr=-10:1:35;         %snr是信噪比PsPn=10.^(0.1*snr);  %Ps/Pn是信号功率比噪声功率,也是信号和噪声的能量比Capacity=[];          %信道容量log2py=[];            %信道容量公式第一项signal_space=[];      %信号空间sample=66666;         %样本个数%QPSK   8PSK     16PSK调制的信道容量曲线for k=2:4    M=2.^k;    if k==2           %QPSK信号星座图        signal_space(1) = complex(1,1);        signal_space(2) = complex(-1,1);        signal_space(3) = complex(-1,-1);        signal_space(4) = complex(1,-1);    end    if k==3           %8PSK信号星座图        signal_space(1) = complex(1,0);        signal_space(2) = complex(cos(pi/4),sin(pi/4));        signal_space(3) = complex(0,1);        signal_space(4) = complex(cos(3*pi/4),sin(3*pi/4));        signal_space(5) = complex(-1,0);        signal_space(6) = complex(cos(5*pi/4),sin(5*pi/4));        signal_space(7) = complex(0,-1);        signal_space(8) = complex(cos(-pi/4),sin(-pi/4));    end    if k==4           %16PSK信号星座图​​EbNo=10*log10(PsPn./Capacity);plot(EbNo,Capacity,'c-');xlabel('Eb/No(dB)');ylabel('Capacity(比特每信道容量)');axis([-2,20,0,5]);grid on;text(18,2.2,'QPSK') ;text(18,3.2,'8PSK') ;text(18,3.8,'16PSK' ) ;text(18,4.2,'16QAM') ;

⛄ 运行结果

⛄ 参考文献

[1] 季幸平,王建军,邵宇丰,等.基于8PSK和16PSK调制的全双工RoF系统研究[J].上海第二工业大学学报, 2018, 35(4):5.DOI:CNKI:SUN:SHDR.0.2018-04-005.

[2] 杜文凤,王亚光.基于Matlab的MIMO-OFDM系统信道容量的研究[J].软件, 2011, 32(2):3.DOI:10.3969/j.issn.1003-6970.2011.02.015.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

### 下载 Popper.min.js 文件的方法 对于希望获取 `popper.min.js` 的开发者来说,可以通过多种方式来实现这一目标。通常情况下,推荐通过官方渠道或可靠的分发网络 (CDN) 来获得最新的稳定版文件。 #### 使用 CDN 获取 Popper.min.js 最简单的方式之一是从流行的 CDN 中加载所需的 JavaScript 库。这不仅简化了集成过程,还可能提高性能,因为许多用户已经缓存了来自这些服务提供商的内容。例如: ```html <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2/dist/umd/popper.min.js"></script> ``` 这种方式不需要手动下载文件到本地服务器;只需将上述 `<script>` 标签添加至 HTML 文档中的适当位置即可立即使用 Popper 功能[^1]。 #### 从 npm 或 yarn 安装 如果项目采用模块化构建工具链,则可以直接利用包管理器如 npm 或 Yarn 进行安装。命令如下所示: ```bash npm install @popperjs/core # 或者 yarn add @popperjs/core ``` 之后可以根据具体需求引入特定功能模块,而不是整个库,从而减少打包后的体积并优化加载速度[^2]。 #### 访问 GitHub 发布页面下载压缩包 另一种方法是访问 Popper.js 的 [GitHub Releases](https://github.com/popperjs/popper-core/releases) 页面,在这里可以选择不同版本的 tarball 或 zip 归档进行下载解压操作。这种方法适合那些偏好离线工作环境或是想要定制编译选项的人群[^3]。 #### 手动克隆仓库 最后一种较为少见但也可行的办法便是直接克隆完整的 Git 存储库副本。这样可以获得开发分支以及历史记录等更多信息,适用于贡献代码或者深入学习内部机制的情况。 ```bash git clone https://github.com/popperjs/popper-core.git cd popper-core ``` 完成以上任一途径后便能成功取得所需版本的 Popper.min.js 文件,并将其应用于个人项目之中[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值