✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
1.1语法
[dy1,dy2,x1c,dy1c]=导数NE(x,y)
1.2输入
x 作为列或行向量,超过 2 个值
y 作为列向量或行向量,与 x 的值数量相同
1.3输出
dy1:一阶导数
dy2:二阶导数
x(1) 处的第一个 dy2 和 x(end) 处的最后一个 dy2 不存在并设置为 NaN
x1c 和 dy1c 返回精确的一阶导数 dy1c(x1c)
如果 x 或 y 是行向量,则所有输出都作为行向量返回。
出错时,所有输出都返回 NaN。
1.4语法示例
对于一阶导数:
dy1=导数NE([1;3;4;5],[1;9;16;25]);
对于二阶导数:
[~,dy2]=导数NE([1;3;4;5],[1;9;16;25]);
对于更准确的一阶导数:
[~,~,x1c,y1c]=derivativeNE([1;3;4;5],[1;9;16;25]);
⛄ 完整代码
%Demo for 'derivativeNE.m'
%After 5 clicks on 'run' you get the results for sine curves
%No plot for dy1c(x1c), since dy1c is nearly on top of dy1
clc
close all
%Create parbola or sine
if exist('curveTypeCounter','var')
curveTypeCounter=curveTypeCounter+1;
if curveTypeCounter>10
curveTypeCounter=1;
end
else
clear
curveTypeCounter=1;
end
curveType=(curveTypeCounter>5);
% curveType=1;%0=force parabola, 1=force sine
%Create parbola or sine
n=round(rand(1)*150+10);%Number of samples, min=10, max=160
% n=20;%Force n samples
if curveType==0
%Parabola with spike at x=0
xr=rand(n,1)*2;
x=sort(xr)-1;
%create spike
indxL=find(x<-0.1,1,'last');
indxR=find(x>0.15,1,'first');
x=[x(1:indxL);-0.1;0;0.15;x(indxR:end)];
x(1)=-1;
x(end)=1;
y=x.^2;
y(indxL+2)=0.05;%Spike amplitude
legendText1=sprintf('y=x^{2} with spike at x=0');
else
%Sine
xr=rand(n,1)*2*pi;
x=sort(xr);
x(1)=0;
x(end)=2*pi;
y=sin(x);
legendText1='y=sin(x)';
end
[dy1,dy2,x1c,dy1c]=derivativeNE(x,y);%Calculate derivatives
%Plot results
nl=char(10);%new line, compatible to older Matlab releases
hfig=figure(1);
clf
hfig.Position(3)=hfig.Position(4)*1.8;
yyaxis left
p1=plot(x,y,'.-g');% original curve
xlabel('x')
if curveType==0
%Parabola
ylabel('y = x^2 and spike at x=0')
xticks([-1,-.5,-.1,0,.15,.5,1])
text(1.27,0.5,['The exact derivates' nl 'at x=-0.1, 0, 0.15' nl 'are not defined as numbers.' nl ...
'They are for the 1st derivative' nl 'Heaviside functions' nl ...
'and for the 2nd derivative' nl 'Dirac functions.'],'BackgroundColor',[1,.85,.85],'FontSize',8)
yyaxis right
xexact=-1:0.01:1;
dy1exact=2*xexact;
p2=plot(xexact(1:91),dy1exact(1:91),'color',[.7,.7,1],'LineWidth',4);%left part exact 1st derivative
hold on
indxx0=find(x==0);
dyL=(y(indxx0)-y(indxx0-1))/(x(indxx0)-x(indxx0-1));
dyR=(y(indxx0+1)-y(indxx0))/(x(indxx0+1)-x(indxx0));
plot(xexact([91,91,101,101]),[dy1exact(91),dyL,dyL,dyR],'-','color',[.7,.7,1],'LineWidth',4);%left part of spike exact 1st derivative
plot(xexact([101,116,116]),[dyR,dyR,dy1exact(116)],'-','color',[.7,.7,1],'LineWidth',4);%right part of spike exact 1st derivative
plot(xexact(116:end),dy1exact(116:end),'-','color',[.7,.7,1],'LineWidth',4);%right part exact 1st derivative
p3=plot(xexact([1,90]),[2,2],'-','color',[1,.7,.8],'LineWidth',4);%left part exact 2nd derivative
plot(xexact([92,115]),[0,0],'-','color',[1,.7,.8],'LineWidth',4);%left and right part of spike exact 2nd derivative
plot(xexact([117,end]),[2,2],'-','color',[1,.7,.8],'LineWidth',4);%right part exact 2nd derivative
%Plot Diracs
quiver(xexact(91),0,0,8,'-','Color',[1,0.7,0.7],'LineWidth',2.5,'MaxHeadSize',.06)
quiver(xexact(101),0,0,-6,'-','Color',[1,0.7,0.7],'LineWidth',2.5,'MaxHeadSize',.08)
quiver(xexact(116),0,0,8,'-','Color',[1,0.7,0.7],'LineWidth',2.5,'MaxHeadSize',.06)
p4=plot(x,dy1,'b-');%1st numerical derivative interpolated
% p4=plot(x1s,dy1c,'.y');%1st derivative centered
p5=plot(x,dy2,'+r-');%2nd numerical derivative
legend([p1,p4,p2,p5,p3],{sprintf('y=x^{2} with spike at x=0'),'1st derivative numerical','1st derivative exact',...
'2nd derivative numerical','2nd derivative exact'},'Location','northeastoutside')
ylim([-8,12])
%Calculate Mean Absolute Errors and max errors without range of spike
%1st derivative at x
x4MAEdy1=[x(1:indxx0-2);x(indxx0+2:end)];% x for MAE
dy14MAE= [dy1(1:indxx0-2);dy1(indxx0+2:end)];% dy1 for MAE
dy1AD=abs(dy14MAE-2*x4MAEdy1);% Absolute differences
[dy1Max,dy1Maxindx]=max(dy1AD);% Max absolute difference of dy1-dy1exact
dy1MAE= sum(dy1AD)/numel(x4MAEdy1);% MAE dy1
%1st derivative at x1c including spike
x4MAEdy1c=[x1c(1:indxx0-2);x1c(indxx0+1:end)];% x for MAE
dy1c4MAE= [dy1c(1:indxx0-2);dy1c(indxx0+1:end)];% dy1c for MAE
dy1cAD=abs(dy1c4MAE-2*x4MAEdy1c);% Absolute differences
[dy1cMax,dy1cMaxindx]=max(dy1cAD);% Max absolute difference of dy1c-dy1exact
dy1cMAE= sum(dy1cAD)/numel(x4MAEdy1c);% MAE dy1c
%2nd derivative
x4MAEdy2=[x(2:indxx0-3);x(indxx0+3:end-1)];% x for dy2 MAE
dy24MAE=[dy2(2:indxx0-3);dy2(indxx0+3:end-1)];% dy2 for MAE
dy2AD=abs(dy24MAE-2);% Absolute differences
[dy2Max,dy2Maxindx]=max(dy2AD);% Max absolute difference of dy2-dy2exact
dy2MAE=sum(dy2AD)/numel(x4MAEdy2);% MAE dy2
%Output text for MAE
text(1.27,-6,['Mean Abs. Error Max abs. error' nl ...
'dy1: ' num2str(dy1MAE,'%.1e') ' ' num2str(dy1Max,2) ' @x=' num2str(x4MAEdy1(dy1Maxindx),2) nl ...
'dy1c: ' num2str(dy1cMAE,'%.1e') ' ' num2str(dy1cMax,2) ' @x=' num2str(x4MAEdy1c(dy1cMaxindx),2) nl ...
'dy2: ' num2str(dy2MAE,'%.1e') ' ' num2str(dy2Max,2) ' @x=' num2str(x4MAEdy2(dy2Maxindx),2) nl ...
'Range around spike is excluded'], ...
'BackgroundColor',[0.98,.98,.98],'FontSize',8)
else
%Sine
ylim([-1.05,1.05])
ylabel('y = sin(x)')
xticks(0:pi/2:2*pi+eps)
set(gca,'TickLabelInterpreter','latex','XTickLabel',{'0','$\frac{\pi}{2}$','$\pi$','$\frac{3\pi}{2}$','$2\pi$'})
% set(gca,'XMinorGrid','on')%Only for test
yyaxis right
xexact=linspace(0,2*pi,200);
p2=plot(xexact,cos(xexact),'color',[.8,.8,1],'LineWidth',4);% exact 1st derivative
hold on
p3=plot(xexact,-sin(xexact),'-','color',[1,.8,0.8],'LineWidth',4);% exact 2nd derivative
p4=plot(x,dy1,'b-');% 1st numerical derivative interpolated
% p4=plot(x1s,dy1c,'y-');%1st derivative centered
p5=plot(x,dy2,'+r-');% 2nd numerical derivative
legend([p1,p4,p2,p5,p3],{'y = sin(x)','1st derivative numerical','1st derivative exact',...
'2nd derivative numerical','2nd derivative exact'},'Location','northeastoutside')
ylim([-1.05,1.05])
xlim([0,2*pi])
%Calculate Mean Absolute Errors and max errors
%1st derivative at x
dy1AD=abs(dy1-cos(x));% Absolute differences
[dy1Max,dy1Maxindx]=max(dy1AD);% Max absolute difference of dy1-dy1exact
dy1MAE= sum(dy1AD)/numel(x);% MAE dy1
%1st derivative at x1c
dy1cAD=abs(dy1c-cos(x1c));% Absolute differences
[dy1cMax,dy1cMaxindx]=max(dy1cAD);% Max absolute difference of dy1c-dy1exact
dy1cMAE= sum(dy1cAD)/numel(x1c);% MAE dy1c
%2n derivative
x4MAEdy2=x(2:end-1);% x for dy2 MAE
dy24MAE=dy2(2:end-1);% dy2 for MAE
dy2AD=abs(dy24MAE+sin(x4MAEdy2));% Absolute differences
[dy2Max,dy2Maxindx]=max(dy2AD);% Max absolute difference of dy2-dy2exact
dy2MAE=sum(dy2AD)/numel(x4MAEdy2);% MAE dy2
%Output text for MAE
text(7.2,0,['Mean Abs. Error Max abs. error' nl ...
'dy1: ' num2str(dy1MAE,'%.1e') ' ' num2str(dy1Max,'%.1e') ' @x=' num2str(x(dy1Maxindx),2) nl ...
'dy1c: ' num2str(dy1cMAE,'%.1e') ' ' num2str(dy1cMax,'%.1e') ' @x=' num2str(x1c(dy1cMaxindx),2) nl ...
'dy2: ' num2str(dy2MAE,'%.1e') ' ' num2str(dy2Max,'%.1e') ' @x=' num2str(x4MAEdy2(dy2Maxindx),2)], ...
'BackgroundColor',[0.98,.98,.98],'FontSize',8)
end
ylabel('1st and 2nd derivatives')
hold off
grid on
function [dy1,dy2,x1c,dy1c]=derivativeNE(x,y)
%Calculate the 1st and 2nd derivative for Not Equal spaced samples.
%
%INPUT
% x as column or row vector, more than 2 values
% y as column or row vector, same amount of values as for x
%
%OUTPUT
% dy1: 1st derivative, y'(x)
%
% dy2: 2nd derivative, y"(x)
% The first dy2 at x(1) and the last dy2 at x(end) don't exist and are set to NaN
% x1c and dy1c return a more accurate (about 3 times better) 1st derivative dy1c(x1c), but with new x-values
%
% If x or y is a row vector, all outputs are returned as row vectors.
% On error NaN is returned
%
%Syntax examples:
% dy1=derivativeNE([1;3;4;5],[1;9;16;25]); % 1st derivative y'(x)
% [~,dy2]=derivativeNE([1;3;4;5],[1;9;16;25]); % 2nd derivative y"(x)
% [~,~,x1c,y1c]=derivativeNE([1;3;4;5],[1;9;16;25]); % 1st derivative more accurate (about 3 times), y'(x1c)
%
%Peter Seibold, August 2023
%Check inputs
if size(x,2)>1 || size(y,2)>1
%Either x or y is a row vector
isRowVector=true;
x=x(:);%convert to column vector
y=y(:);
else
isRowVector=false;
end
if numel(x)~=numel(y) || numel(x)<3
dy1=NaN; dy2=NaN; x1c=NaN; dy1c=NaN;%Return all output as NaN
disp('x and y must have the same size and at least 3 elements!')
return
end
%1st derivative
dx=diff(x);
dy=diff(y);
dy1c=dy./dx;% 1st derivative for centered x
x1c=x(1:end-1)+dx/2;% center each x (shift each x by half distance to next x)
%interpolate/extrapolate dy1c(x1c) to match x, result: dy1(x)
y2=[dy1c(2);dy1c(2:end);dy1c(end)]; %repeat border values for extrapolation
y1=[dy1c(1);dy1c(1:end-1);dy1c(end-1)];
x1=[x1c(1);x1c(1:end-1);x1c(end-1)];
x2=[x1c(2);x1c(2:end);x1c(end)];
dy1=(y2-y1)./(x2-x1).*(x-x2)+y2; %interpolate/extrapolate
%2nd derivative
y32x32=dy1c(2:end); %1st derivatives at even positions
y21x21=dy1c(1:end-1); %1st derivatives at odd positions
dx31=y32x32; %create vector with dummy values, with two elements less than number of x-elements
dx31(1:2:end)=x(3:2:end)-x(1:2:end-2);%x-difference odd pairs
dx31(2:2:end)=x(4:2:end)-x(2:2:end-2);%x-difference even pairs
dy2c=2*(y32x32-y21x21)./dx31; %2nd derivatives dy2 at center of the two surrounding samples
x2c=dy2c; %create vector with dummy values, with two elements less than number of x-elements
x2c(1:2:end)=(x(1:2:end-2)+x(3:2:end))/2;%x for dyc at center of the two surrounding samples, (overwrite dummy values)
x2c(2:2:end)=(x(2:2:end-2)+x(4:2:end))/2;%dito for even x centered, now we have all center x2c for 2nd derivatives
%interpolate dy2c(x2c) to match x, result: dy2(x)
if numel(x)>3
dy2=[NaN;interp1(x2c,dy2c,x(2:end-1),'linear','extrap');NaN];%interpolate and pad unavailable border values
else
%Interpolation needs at least two dy2c samples
dy2=[NaN;dy2c;NaN];% output only the single dy2(x)
end
%Convert back to user format
if isRowVector
%Either x or y input was a row vector
%Convert to row vector
dy1=dy1';
dy2=dy2';
x1c=x1c';
dy1c=dy1c';
end
⛄ 运行结果
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合