基于Matlab画甘特图附完整代码(粉丝福利)

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

甘特图在几个关键方面与其他图表不同:

关注时间:甘特图主要关注时间。它们显示任务的开始和结束日期及其持续时间。这使它们成为项目规划和调度的理想选择。 

任务依赖性:甘特图也可用于显示任务依赖性。这显示了不同的任务如何相互关联以及它们需要如何按顺序完成。这可以帮助识别潜在的瓶颈并确保项目按时完成。 

进度跟踪:甘特图也可用于跟踪项目的进度。这可以通过在任务完成时更新任务的开始日期和结束日期来完成。这有助于及早发现任何潜在问题并根据需要进行调整。 

其他类型的图表,例如条形图、折线图和饼图,并不是专门为项目规划和调度而设计的。它们可用于以多种方式可视化数据,但它们不显示任务依赖性或进度跟踪。

📣 代码

%% Gantt Chart in MATLABclc,clear all,close all,tasks = {'Task 1', 'Task 2', 'Task 3'};start_times = [1, 4, 7]; % Start times in daysend_times = [3, 6, 9];   % End times in daysdurations = end_times - start_times;figure;bar(start_times, durations, 'stacked');% Add task labelstask_labels = strcat(tasks, ' (', num2str(durations), ' days)');yticks(start_times + durations / 2);yticklabels(task_labels);% Set axis labelsxlabel('Time (days)');ylabel('Tasks');title('Gantt Chart');grid on;%figure;% show;%%% clear all,close all,clc,% Define your tasks and their start and end timestasks = {'Task 1', 'Task 2', 'Task 3'};start_times = [1, 4, 7]; % Start times in daysend_times = [3, 6, 9];   % End times in days% Calculate the duration of each taskdurations = end_times - start_times;% Define colors for each taskcolors = {'red', 'yellow', 'blue'};% Create the Gantt chartfigure;% Specify the time scale (you can change this as needed)time_scale = 1; % In days, adjust as necessary% Create a bar chart with specified colorsfor i = 1:length(tasks)    barh(i, durations(i) * time_scale, 'FaceColor', colors{i});    hold on;end% Customize the Gantt chart appearanceyticks(1:length(tasks));yticklabels(tasks);xlabel('Time (days)');ylabel('Tasks');title('Customized Gantt Chart');grid on;xlim([0, max(end_times) * time_scale + 2]); % Adjust the x-axis limit as needed% Show the Gantt chart% show;

⛳️ 运行结果

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值