【特征提取】基于Matlab提取脑电波delta、theta、alhpa、beta、gamma

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

脑电波是人体发出的电信号,它可以通过脑电波算法进行分析和研究。脑电波算法可以分为delta、theta、alpha、beta和gamma五种类型,每种类型都有其独特的特征和应用。下面将详细介绍这五种脑电波算法的步骤。

首先是delta波算法。Delta波是一种低频脑电波,频率范围在0.5-4Hz之间。Delta波主要出现在深度睡眠和昏迷状态下。Delta波算法的步骤如下:

1.采集脑电信号:使用脑电图采集设备采集被试者头部的脑电信号。

2.预处理数据:对采集到的脑电信号进行预处理,包括滤波、去除噪声等。

3.分析数据:对预处理后的脑电信号进行分析,提取出其中的delta波。

4.统计分析:对提取出的delta波进行统计分析,包括平均值、标准差等。

5.结果解释:根据统计分析结果进行结果解释,进一步研究delta波的特征和应用。

接下来是theta波算法。Theta波是一种较低频率的脑电波,频率范围在4-8Hz之间。Theta波主要出现在睡眠、放松和冥想状态下。Theta波算法的步骤如下:

1.采集脑电信号:使用脑电图采集设备采集被试者头部的脑电信号。

2.预处理数据:对采集到的脑电信号进行预处理,包括滤波、去除噪声等。

3.分析数据:对预处理后的脑电信号进行分析,提取出其中的theta波。

4.统计分析:对提取出的theta波进行统计分析,包括平均值、标准差等。

5.结果解释:根据统计分析结果进行结果解释,进一步研究theta波的特征和应用。

其次是alpha波算法。Alpha波是一种较高频率的脑电波,频率范围在8-13Hz之间。Alpha波主要出现在放松、休息和冥想状态下。Alpha波算法的步骤如下:

1.采集脑电信号:使用脑电图采集设备采集被试者头部的脑电信号。

2.预处理数据:对采集到的脑电信号进行预处理,包括滤波、去除噪声等。

3.分析数据:对预处理后的脑电信号进行分析,提取出其中的alpha波。

4.统计分析:对提取出的alpha波进行统计分析,包括平均值、标准差等。

5.结果解释:根据统计分析结果进行结果解释,进一步研究alpha波的特征和应用。

然后是beta波算法。Beta波是一种高频率的脑电波,频率范围在13-30Hz之间。Beta波主要出现在焦虑和紧张状态下。Beta波算法的步骤如下:

1.采集脑电信号:使用脑电图采集设备采集被试者头部的脑电信号。

2.预处理数据:对采集到的脑电信号进行预处理,包括滤波、去除噪声等。

3.分析数据:对预处理后的脑电信号进行分析,提取出其中的beta波。

4.统计分析:对提取出的beta波进行统计分析,包括平均值、标准差等。

5.结果解释:根据统计分析结果进行结果解释,进一步研究beta波的特征和应用。

最后是gamma波算法。Gamma波是一种非常高频率的脑电波,频率范围在30-100Hz之间。Gamma波主要出现在大脑活动强度较高的情况下。Gamma波算法的步骤如下:

1.采集脑电信号:使用脑电图采集设备采集被试者头部的脑电信号。

2.预处理数据:对采集到的脑电信号进行预处理,包括滤波、去除噪声等。

3.分析数据:对预处理后的脑电信号进行分析,提取出其中的gamma波。

4.统计分析:对提取出的gamma波进行统计分析,包括平均值、标准差等。

5.结果解释:根据统计分析结果进行结果解释,进一步研究gamma波的特征和应用。

综上所述,脑电波delta、theta、alpha、beta、gamma算法步骤是通过采集脑电信号、预处理数据、分析数据、统计分析和结果解释等步骤来研究不同频率的脑电波特征和应用。这些算法可以应用于脑电信号的研究和分析,为研究人类大脑的功能和行为提供了重要的工具和方法。

📣 部分代码

function [ pxx,fpow,powerFeatures ] = powerSort( inSignal,fs )%powerSort  求功率谱密度以及各个节律频带的信号功率%   inSignal  输入信号%   fs  采样频率%   pxx  功率谱密度%   fpow  频率向量%   powerFeatures  各节律频带的信号功率组成的数组    %使用 welch 法来提取功率谱密度    [pxx, fpow] = pwelch(inSignal, [], [], [], fs);    %对去基线去工频的信号求功率谱密度    %计算各个节律频带的信号平均功率    power_delta = bandpower(pxx, fpow, [0.5, 3], 'psd');    power_theta = bandpower(pxx, fpow, [4, 7], 'psd');    power_alpha = bandpower(pxx, fpow, [8, 13], 'psd');    power_beta = bandpower(pxx, fpow, [14, 30], 'psd');    power_gamma = bandpower(pxx, fpow, [31, 60], 'psd');%从功率谱可以看出50HZ以后就基本没有幅度了    %各节律平均功率数组    powerFeatures=[power_delta,power_theta,power_alpha,power_beta,power_gamma];end

⛳️ 运行结果

🔗 参考文献

[1] 董燕,徐瑞娟,史亚丽,et al.激素冲击治疗对婴儿痉挛症患儿脑功能网络属性特征路径长度的影响[J].中华实用诊断与治疗杂志, 2022, 36(4):5.

[2] 朱修缙.基于自闭症儿童脑电信号的音乐调节系统[D].济南大学[2023-10-21].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>