基于遗传算法求解考虑装卸和中转的公铁水多式联运路径优化问题附Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

多式联运是指不同运输方式之间的协同运输,包括公路、铁路、水路等多种运输方式的组合运输。多式联运可以充分发挥各种运输方式的优势,降低运输成本,提高运输效率,减少环境污染,是现代物流运输的重要发展方向。

然而,多式联运路径优化问题是一个复杂的组合优化问题,需要考虑多种运输方式之间的协同配合,以及不同运输方式之间的转运和换乘等问题。传统的优化方法往往难以有效求解多式联运路径优化问题,因此需要借助于现代优化算法来求解。

遗传算法是一种基于生物进化过程的优化算法,通过模拟自然选择、交叉和变异等过程来搜索最优解。在多式联运路径优化问题中,可以将不同运输方式的路径、节点、转运站等信息编码成遗传算法的个体,然后利用遗传算法来搜索最优的多式联运路径。

基于遗传算法求解公铁水多式联运路径优化问题,首先需要将问题抽象成一个数学模型,明确问题的目标函数、约束条件和决策变量。然后,可以利用遗传算法的编码、选择、交叉和变异等操作来搜索最优解。在搜索过程中,可以通过不断迭代和优化来逐步逼近最优解。

除了遗传算法,还可以结合其他优化算法和启发式算法来求解多式联运路径优化问题,如模拟退火算法、粒子群算法等。不同的算法具有不同的特点和适用范围,可以根据具体的问题特点和求解需求来选择合适的算法。

在实际应用中,基于遗传算法的多式联运路径优化方法已经得到了广泛的应用。例如,在物流配送、供应链管理、城市交通规划等领域,都可以利用多式联运路径优化方法来优化运输网络、降低成本、提高效率。

本文选取长沙为国际集装箱多式联运的始发城市,德国柏林为终点城市,选取了武汉、郑州、重庆、成都、西安、怀化、贵阳、南宁、北海、昆明、广州、上海、满洲里、二连浩特、阿拉山口、喀什、瓜达尔、仰光、曼谷、胡志明、新加坡、鹿特丹、汉堡、华沙、杜伊斯堡共25个城市作为中间节点。设定有10个20英尺的集装箱(配货毛重17.5吨)将从长沙运往柏林,每相连两个城市节点之间有铁路运输、公路运输、水路运输中的1-3种运输方式可供选择。该算例的集装箱多式联运网络如图5-1所示。

总之,基于遗传算法求解公铁水多式联运路径优化问题是一个重要的研究课题,通过合理抽象问题、选择合适的优化算法,可以有效求解多式联运路径优化问题,为现代物流运输提供更加高效和可持续的解决方案。希望未来能够有更多的研究者和实践者投入到这一领域,共同推动多式联运路径优化技术的发展和应用。

📣 部分代码

<span style="color:#333333"><span style="background-color:#fafafa"><code>function distance_road=data_modi(road,m)</code><code>% 问题一:1到9的</code><code>% Modd.distan.road</code><code>% road=[];</code><code>% load dis_road.mat% road(1,2-39,1-38)</code><code>%1到9的标准的distance_road;</code><code>%第一步:去掉第一行</code><code>% road(1,:)=[];</code><code>% 第二步将1和9分别移动到行首和列尾:先交换9列和最后一列,再交换9行和最后一行</code><code>%列交换</code><code>temp1=road(:,38);</code><code><span style="color:#dd1144">road(:,38)=road(:,m);</span></code><code><span style="color:#dd1144">road(:,m)=temp1;</span></code><code>%行交换</code><code>temp2=road(38,:);</code><code><span style="color:#dd1144">road(38,:)=road(m,:);</span></code><code><span style="color:#dd1144">road(m,:)=temp2;</span></code><code>distance_road=road;</code><code>%去掉第一列和最后一行</code><code><span style="color:#dd1144">distance_road(:,1)=[];</span></code><code><span style="color:#dd1144">distance_road(38,:)=[];</span></code><code>end</code><code>​</code><code>​</code><code>​</code><code>​</code><code>​</code><code>​</code></span></span>

⛳️ 运行结果

🔗 参考文献

[1] 范方玲子,王茂春,陈厚春.基于遗传算法的公铁水多式联运路径优化问题研究[J].物流科技, 2020, 43(2):6.DOI:CNKI:SUN:LTKJ.0.2020-02-025.

[2] 陈思恩.一种基于遗传算法的公铁水多式联运路径优化方法:CN202011365004.1[P].CN112330071A[2023-12-20].

[3] 李干亮.基于多维视角的中新集装箱多式联运路径优化研究[D].重庆交通大学,2019.

[4] 万杰,魏爽.基于混合算法的多目标多式联运路径选择问题研究[J].天津大学学报:自然科学与工程技术版, 2019, 52(3):8.DOI:CNKI:SUN:TJDX.0.2019-03-010.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值