✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
多式联运是指不同运输方式之间的协同运输,包括公路、铁路、水路等多种运输方式的组合运输。多式联运可以充分发挥各种运输方式的优势,降低运输成本,提高运输效率,减少环境污染,是现代物流运输的重要发展方向。
然而,多式联运路径优化问题是一个复杂的组合优化问题,需要考虑多种运输方式之间的协同配合,以及不同运输方式之间的转运和换乘等问题。传统的优化方法往往难以有效求解多式联运路径优化问题,因此需要借助于现代优化算法来求解。
遗传算法是一种基于生物进化过程的优化算法,通过模拟自然选择、交叉和变异等过程来搜索最优解。在多式联运路径优化问题中,可以将不同运输方式的路径、节点、转运站等信息编码成遗传算法的个体,然后利用遗传算法来搜索最优的多式联运路径。
基于遗传算法求解公铁水多式联运路径优化问题,首先需要将问题抽象成一个数学模型,明确问题的目标函数、约束条件和决策变量。然后,可以利用遗传算法的编码、选择、交叉和变异等操作来搜索最优解。在搜索过程中,可以通过不断迭代和优化来逐步逼近最优解。
除了遗传算法,还可以结合其他优化算法和启发式算法来求解多式联运路径优化问题,如模拟退火算法、粒子群算法等。不同的算法具有不同的特点和适用范围,可以根据具体的问题特点和求解需求来选择合适的算法。
在实际应用中,基于遗传算法的多式联运路径优化方法已经得到了广泛的应用。例如,在物流配送、供应链管理、城市交通规划等领域,都可以利用多式联运路径优化方法来优化运输网络、降低成本、提高效率。
本文选取长沙为国际集装箱多式联运的始发城市,德国柏林为终点城市,选取了武汉、郑州、重庆、成都、西安、怀化、贵阳、南宁、北海、昆明、广州、上海、满洲里、二连浩特、阿拉山口、喀什、瓜达尔、仰光、曼谷、胡志明、新加坡、鹿特丹、汉堡、华沙、杜伊斯堡共25个城市作为中间节点。设定有10个20英尺的集装箱(配货毛重17.5吨)将从长沙运往柏林,每相连两个城市节点之间有铁路运输、公路运输、水路运输中的1-3种运输方式可供选择。该算例的集装箱多式联运网络如图5-1所示。
总之,基于遗传算法求解公铁水多式联运路径优化问题是一个重要的研究课题,通过合理抽象问题、选择合适的优化算法,可以有效求解多式联运路径优化问题,为现代物流运输提供更加高效和可持续的解决方案。希望未来能够有更多的研究者和实践者投入到这一领域,共同推动多式联运路径优化技术的发展和应用。
📣 部分代码
<span style="color:#333333"><span style="background-color:#fafafa"><code>function distance_road=data_modi(road,m)</code><code>% 问题一:1到9的</code><code>% Modd.distan.road</code><code>% road=[];</code><code>% load dis_road.mat% road(1,2-39,1-38)</code><code>%1到9的标准的distance_road;</code><code>%第一步:去掉第一行</code><code>% road(1,:)=[];</code><code>% 第二步将1和9分别移动到行首和列尾:先交换9列和最后一列,再交换9行和最后一行</code><code>%列交换</code><code>temp1=road(:,38);</code><code><span style="color:#dd1144">road(:,38)=road(:,m);</span></code><code><span style="color:#dd1144">road(:,m)=temp1;</span></code><code>%行交换</code><code>temp2=road(38,:);</code><code><span style="color:#dd1144">road(38,:)=road(m,:);</span></code><code><span style="color:#dd1144">road(m,:)=temp2;</span></code><code>distance_road=road;</code><code>%去掉第一列和最后一行</code><code><span style="color:#dd1144">distance_road(:,1)=[];</span></code><code><span style="color:#dd1144">distance_road(38,:)=[];</span></code><code>end</code><code></code><code></code><code></code><code></code><code></code><code></code></span></span>
⛳️ 运行结果
🔗 参考文献
[1] 范方玲子,王茂春,陈厚春.基于遗传算法的公铁水多式联运路径优化问题研究[J].物流科技, 2020, 43(2):6.DOI:CNKI:SUN:LTKJ.0.2020-02-025.
[2] 陈思恩.一种基于遗传算法的公铁水多式联运路径优化方法:CN202011365004.1[P].CN112330071A[2023-12-20].
[3] 李干亮.基于多维视角的中新集装箱多式联运路径优化研究[D].重庆交通大学,2019.
[4] 万杰,魏爽.基于混合算法的多目标多式联运路径选择问题研究[J].天津大学学报:自然科学与工程技术版, 2019, 52(3):8.DOI:CNKI:SUN:TJDX.0.2019-03-010.